
- •Билет 1
- •Понятие информационной и компьютерной технологии
- •Компьютерные информационные технологии предметных областей. Технологии автоматизации делопроизводства.
- •Объектно-ориентированное программирование. Класс и объект.
- •Билет 2
- •1)Алгоритмизация и программирование
- •Принципы разработки алгоритмов и программ
- •2)Технологии бухгалтерского учета и финансового анализа.
- •3)Основные преимущества объектно-ориентированного подхода при разработке программ.
- •Билет 3
- •Классификация языков программирования.
- •Задачи и виды сапр. Цели и задачи автоматизации проектирования.
- •Технологии электронной коммерции.
- •Билет 4
- •1)Элементы языка Паскаль
- •2)Сетевые компьютерные технологии
- •3)Уровни представления комп.Ит
- •Билет 5
- •2)Сетевые комп.Техн.Архитектура комп.Сетей
- •Семиуровневая сетевая архитектура:
- •3)Виды ит по охвату задач управления
- •Билет 6
- •1)Управляющие конструкции на Паскале.Операторы условия и выбора
- •2)Архитектура комп.Сетей
- •Семиуровневая сетевая архитектура
- •3)Основания классиф.Информ.Техн.Виды ит по способу реализации
- •Билет 7
- •1. Алгоритмы с циклической структурой.
- •2. Понятия интерфейса, протокола и стека.
- •Протокол, интерфейс, стек протоколов
- •Билет 8
- •1.Операторы цикла с предусловием, постусловием и вложение циклов
- •2. Современная автоматизированная система управления технологическим процессом (асу тп).
- •Билет 9
- •1.Подпрограммы на Паскале. Процедуры и функции
- •2.Этапы развития асу тп.
- •Билет 10
- •1. Подпрограммы на Паскале. Описание процедуры. Оператор вызова процедуры
- •2. Тенденция развития диспетчерского управления тп.
- •3) Понятие сортировки. Методы и алгоритмы сортировки в линейных структурах.
- •Билет 11
- •1. Подпрограммы на Паскале. Описание функции. Указатель функции.
- •2. Концепция scada (ду и сд).
- •3. Понятие массива и его элементы. Объявление одномерного массива на языке Паскаль.
- •Билет 12
- •1. Подпрограммы на Паскале. Формальные и фактические параметры.
- •2. Компоненты систем контроля и управления и их назначение.
- •3. Объявление и вызов процедуры.
- •Билет 13
- •1. Обработка массивов на Паскале.
- •2. Режимы взаимодействия пользователя и сапр.
- •3. Параметры, которые используются в подпрограммах и их отличия друг от друга.
- •Билет 14
- •1. Обработка массивов на Паскале. Одномерные и двумерные массивы
- •2. Задачи и виды сапр. Виды обеспечения сапр.
- •3. Особенности использования оператора выбора.
- •Билет 15
- •1. Обработка массивов на Паскале. Алгоритмы сортировки массивов
- •2. Классификация программного обеспечения ит
- •3. Особенности использования условного оператора.
- •Билет 16 1. Работа с записями и файлами. Объявление записей. Обращение к элементам записи
- •Билет 17 1. Работа с записями и файлами. Общие сведения о файлах. Описание файлов.
- •Билет 18 1. Работа с записями и файлами. Стандартные процедуры и функции для работы с файлами
- •Билет 19
- •1. Работа с записями и файлами. Текстовые файлы. Файлы с типом.
- •2. Программное и информационное обеспечение компьютерных информационных технологий.
- •3. Особенности машинных и машинно-ориентированных языков.
- •Билет 20
- •1. Объектно-ориентированное программирование. Понятие объекта. Компоненты.
- •2. Этапы развития и особенности информационных технологий.
- •3. Сущность алгоритмического процесса. Особенности циклического и рекурсивного алгоритмов.
- •Билет 21
- •1 Объектно-ориентированное программирование. Полиморфизм. Компоненты.
- •2. Понятие информационной и компьютерной технологии. Классификация информационных технологий.
- •3. Какими свойствами должен обладать любой алгоритм? Способы записи алгоритма.
- •Билет 22
- •1) Объектно-ориентированное программирование. Инкапсуляция и наследование.
- •2) Цели автоматизации проектирования состоят в следующем:
Билет 22
1) Объектно-ориентированное программирование. Инкапсуляция и наследование.
Понятие объекта. В отличие от процедурного подхода к программированию, когда описание алгоритма представляет собой последовательность действий, объектно-ориентированный подход предлагает описывать программные системы в виде взаимодействия объектов. Таким образом, объект – это понятие, сочетающее в себе совокупность данных и действий над ними. Свойства – это характеристики состояния объекта, а действия над данными объекта называются методами.
Наследование. Наследование позволяет повторно использовать уже созданную часть программного кода в других проектах. Посредством наследования формируются связи между объектами, а для выражения процесса наследования используют понятия «родители» и «потомки». В программировании наследование служит для сокращения избыточности кода, и суть его заключается в том, что уже существующий интерфейс вместе с его программной частью можно использовать для других объектов. При наследовании могут также проводиться изменения интерфейсов.
Инкапсуляция. Объединение в одном месте всех данных и методов объекта (включая данные и методы объектов-предков) называется инкапсуляцией и облегчает понимание работы программы, а также и ее отладку и модификацию, так как только в очень редких случаях разработчика интересует внутренняя реализация объектов – главное, чтобы объект обеспечивал функции, которые он должен предоставить.
2) Цели автоматизации проектирования состоят в следующем:
1) повышение качества и технико-экономического уровня проектируемой и выпускаемой продукции;
2) повышение эффективности объектов проектирования, уменьшение затрат на их производство и эксплуатацию;
3) сокращение сроков, уменьшение трудоёмкости проектирования и повышение качества проектной документации;
4) развитие творческого аспекта в деятельности проектировщиков.
3) Алгоритмизация и программирование. Роль алгоритмов и программирования в компьютерной технологии.
Процесс алгоритмизации решения задачи в общем случае реализуется по следующей схеме: выделение автономных этапов процесса решения задачи (как правило, с одним входом и одним выходом); формализованное описание содержания работ, выполняемых на каждом выделенном этапе; проверка правильности реализации выбранного алгоритма на различных примерах решения задач.
Каждый алгоритм должен задаваться: множеством допустимых исходных данных; начальным состоянием; множеством допустимых промежуточных состояний; правилами перехода из одного состояния в другое; множеством конечных результатов; конечным состоянием. В зависимости от конкретного задания этих параметров определяются классы алгоритмов, например алгоритмы линейные, циклические, сортировки и т. д.
Любой алгоритм обладает следующими свойствами:
детерминированность (определенность, обусловленность) означает, что набор указаний алгоритма должен быть однозначно и точно понят любым исполнителем. Это свойство определяет однозначность результата работы алгоритма при заданных исходных данных;
массовость алгоритма предполагает возможность варьирования исходных данных в определенных пределах. Свойство массовости определяет пригодность использования алгоритма для решения множества задач данного класса и является основным фактором, обеспечивающим экономическую эффективность решения задач на ЭВМ;
результативность алгоритма предполагает, что для любых допустимых исходных данных он должен через конечное число шагов (или итераций) завершить свою работу;
дискретность алгоритма допускает разбиение определенного алгоритмического процесса на отдельные элементарные этапы, возможность реализации которых человеком или ЭВМ не вызывает сомнения, а результат выполнения каждого элементарного этапа вполне определен и понятен;
конечность алгоритма означает, что он должен выполняться за конечное время.
Таким образом, алгоритм дает возможность чисто механически решать любую конкретную задачу из некоторого класса однотипных.