
- •Введение
- •1 Общая часть
- •Описание цифрового измерителя плотности
- •Принцип действия цифрового измерителя плотности
- •2 Специальная часть
- •Нормативные документы
- •Принципиальная схема цифрового измерителя плотности
- •Структурная схема цифрового измерителя плотности
- •3 Проектирование
- •3.1 Краткое описание программной среды проектирования
- •3.2 Реализация основных алгоритмов в среде проектирования
Принцип действия цифрового измерителя плотности
Принцип действия плотномеров основан на измерении частоты колебаний U-образной измерительной трубки, вызываемых электромагнитным генератором. Под воздействием возбуждающего поля пустая измерительная трубка колеблется с собственной частотой, а при заполнении трубки исследуемым веществом частота колебаний изменяется в зависимости от массы (плотности) исследуемого вещества. Подобно маятнику, чем больше плотность образца, а значит и его масса, заключенная в трубке, тем ниже частота колебаний. Для пересчета частоты колебаний в цифровое значение плотности используются данные предварительной калибровки.
Поскольку плотность сильно зависит от температуры, для исключения этого влияния на результат измерительная трубка термостатируется. Поддержание температуры осуществляется электронным термостатом, встроенным в прибор. Стандартная температура измерения плотности жидкостей составляет 20 °C.
Частота собственных колебаний трубки зависит от её конструктивных особенностей и определяется в процессе калибровки при заполнении её веществом с известной плотностью. Калибровка плотномеров производится по результатам измерения частоты колебания измерительной трубки на двух стандартных веществах – сухой воздух и бидистиллированная дегазированная вода. Результаты калибровки сохраняются в памяти прибора до следующей калибровки. В настоящее время при анализе жидких образцов повсеместно переходят с ручных методов на использование цифровых приборов. Главная причина - более высокая скорость и точность инструментальных методов анализа, а также большая безопасность при работе с токсичными и легковоспламеняющимися образцами.
Плотномеры представляют собой автоматические приборы, обеспечивающие измерение плотности жидких образцов. Принцип действия плотномеров основан на измерении частоты колебаний U-образной измерительной трубки, вызываемых электромагнитным генератором. Под воздействием возбуждающего поля пустая измерительная трубка колеблется с собственной частотой, а при заполнении трубки исследуемым веществом частота колебаний изменяется в зависимости от массы (плотности) исследуемого вещества. Подобно маятнику, чем больше плотность образца, а значит и его масса, заключенная в трубке, тем ниже частота колебаний. Для пересчета частоты колебаний в цифровое значение плотности используются данные предварительной калибровки.
Истинную плотность из кажущейся получают с помощью величины плотности – доли объёма пустот в занимаемом объёме.
Как правило, при уменьшении температуры плотность увеличивается, хотя встречаются вещества, чья плотность ведет себя иначе, например, вода, бронза и чугун. Так, плотность воды имеет максимальное значение при 4°C и уменьшается как с повышением, так и с понижением температуры.
При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Правда, вода является исключением из этого правила, её плотность при затвердевании уменьшается.
Для различных природных объектов плотность меняется в очень широком диапазоне. Самую низкую плотность имеет межгалактическая среда (ρ ~ 10−33 кг/м³. Плотность межзвёздной среды порядка 10−21 кг/м³. Средняя плотность Солнца примерно в 1,5 раза выше плотности воды, равной 1000 кг/м³, а средняя плотность Земли равна 5520 кг/м³. Наибольшую плотность среди металлов имеет осмий (22 500 кг/м³), а плотность нейтронных звёзд имеет порядок 1017/1018 кг/м³.[2]