- •1. Введение в автоматизированное проектирование 12
- •2. Техническое обеспечение систем автоматизированного проек-
- •3. Математическое обеспечение анализа проектных решений 85
- •4. Математическое обеспечение синтеза проектных решений 153
- •5. Методическое и программное обеспечение автоматизированных
- •6. Информационная поддержка этапов жизненного цикла изделий
- •Глава 1 является вводной. Здесь даны начальные сведения о процессе проек-
- •Глава 2 посвящена техническому обеспечению сапр, основное внимание
- •Глава 6 знакомит читателя с cals-технологиями - подходами и средствами
- •1. Введение в автоматизированное
- •1.1. Системный подход к проектированию
- •1.2. Структура процесса проектирования
- •1. Введение в автоматизированное проектирование
- •1. Введение в автоматизированное проектирование
- •1.3. Системы автоматизированного проектирования и их место
- •1.4. Особенности проектирования
- •1. Введение в автоматизированное проектирование
- •1.4. Особенности проектирования автоматизированных систем
- •1. Введение в автоматизированное проектирование
- •1.4. Особенности проектирования автоматизированных систем
- •I. Введение в автоматизированное проектирование
- •1) Выполнение всех необходимых проектных процедур, для которых имеется
- •2) Взаимодействие между проектировщиками и эвм, поддержку интер-
- •3) Взаимодействие между членами коллектива, работающими над общим
- •2 Техническое обеспечение сапр
- •2 1 Структура технического обеспечения
- •2. Техническое обеспечение сапр
- •2.1. Структура технического обеспечения
- •2. Техническое обеспечение сапр
- •2.2. Аппаратура рабочих мест в автоматизированных системах
- •2.2. Аппаратура рабочих мест в автоматизированных
- •256 К байт встроены в процессорный кристалл, емкость оперативной памяти составляет
- •2. Техническое обеспечение сапр
- •2.2. Аппаратура рабочих мест в автоматизированных системах
- •60 Гц для разрешения 1600 х 1200. Отметим, что чем ниже частота кадровой
- •2. Техническое обеспечение сапр
- •1) Работа в режиме реального времени (для промышленных персональных
- •2.3. Методы доступа в локальных вычислительных сетях
- •2.3. Методы доступа в локальных вычислительных сетях
- •2 Техническое обеспечение сапр
- •2.4. Локальные вычислительные сети Ethernet
- •2.4. Локальные вычислительные сети Ethernet
- •1996 Г. 85 % всех компьютеров в лвс были в сетях Ethernet.
- •2. Техническое обеспечение сапр
- •1. Thick Ethernet (шина с «толстым» кабелем); принятое обозначение вариан-
- •2. Thin Ethernet (шина с «тонким» кабелем); принятое обозначение 10Base-2:
- •3. TwistedPair Ethernet; принятое обозначение 10Base-t; это кабельная сеть
- •2.4. Локальные вычислительные сети Ethernet
- •100. Физическая организация линий связи в 10Base-t мало напоминает шину.
- •5. RadioEthernet (стандарт шее 802/11). Среда передачи данных — радио-
- •2. Техническое обеспечение сапр
- •6. Fast Ethernet, иначе называемая 100Base-X или 100Base-t (стандарт
- •Ieee 802/3и). Информационная скорость 100 Мбит/с. В этой сети применен
- •100Base-t4 — с четырьмя неэкранированными парами категории 5, 100Base-
- •7. Gigabit Ethernet (1000Base-X). В этом варианте получены гигабитные
- •1000Base-lx) на расстояниях до 550 и 5000 м, на витой паре категории 5
- •2.5. Сети кольцевой топологии
- •2.5. Сети кольцевой топологии
- •12; Максимальная длина замыкающего кабеля 120 м; максимальная длина
- •45 М; два варианта скорости передачи данных по линии 4 или 16 Мбит/с.
- •2. Техническое обеспечение сапр
- •1) Каждая станция, готовая к передаче, записывает значение своего приорите-
- •2.5. Сети кольцевой топологии
- •2. Техническое обеспечение сапр
- •2.6. Каналы передачи данных в корпоративных сетях
- •4800 Бит/с. С ростом длины линии связи увеличивается затухание сигнала и,
- •2.6. Каналы передачи данных в корпоративных сетях
- •2. Техническое обеспечение сапр
- •0,7 ДБ/км; полоса частот—до 2 гГц; ориентировочная цена 4... 5 долл. За 1 м. Пре-
- •140 Мбит/с (по европейскому). Общая скорость передачи для stm-1 равна
- •155,52 Мбит/с.
- •2.6. Каналы передачи данных в корпоративных сетях
- •15...20 Км с расположением антенн на крышах зданий). Мост имеет два адап-
- •11 Мбит/с, полоса пропускания составляет 22 мГц в диапазоне частот 2,4 гГц).
- •2. Техническое обеспечение сапр
- •2 6 Каналы передачи данных в корпоративных сетях
- •V34.Bis скорости могут достигать 33,6 кбит/с. В последнее время стали вы-
- •2. Техническое обеспечение сапр
- •1 0 1 0 0 0 1 1 1 0 1 0 1 1 П.Гщпопп.Пг
- •2.6. Каналы передачи данных в корпоративных сетях
- •Isdn (Integrated Service Digital Network).
- •Isdn (Broadband isdn, или b-isdn) со скоростями 155 ... 2048 Мбит/с.
- •16 Кбит/с. Каналы в можно использовать для передачи как закодированной
- •2. Техническое обеспечение сапр
- •5,4 Км. Применяемые для кодирования устройства также называют модемами.
- •2.7. Стеки протоколов и типы сетей
- •2.7. Стеки протоколов и типы сетей
- •2. Техническое обеспечение сапр
- •0,5 С и ограничение скорости будет около 1 Мбит/с. Можно заметно увеличить
- •2.7. Стеки протоколов и типы сетей
- •2. Техническое обеспечение сапр
- •2.7. Стеки протоколов и типы сетей
- •Internet это dns (Domain Name Service), в семиуровневой модели iso — стан-
- •1Ру4-адрес — слово, записываемое в виде четырех частей (побайтно), раз-
- •2. Техническое обеспечение сапр
- •2.7. Стеки протоколов и типы сетей
- •2. Техническое обеспечение сапр
- •Icmp-пакеты вкладываются в ip-дейтаграммы при доставке.
- •2.7. Стеки протоколов и типы сетей
- •2. Техническое обеспечение сапр
- •2.7. Стеки протоколов и типы сетей
- •2. Техническое обеспечение сапр
- •2 7 Стеки протоколов и типы сетей
- •2. Техническое обеспечение сапр
- •2 7 Стеки протоколов и типы сетей
- •2. Техническое обеспечение сапр
- •2.7. Стеки протоколов и типы сетей
- •2. Техническое обеспечение сапр
- •3 Математическое обеспечение анализа проектных решений
- •3.1. Компоненты математического обеспечения
- •3. Математическое обеспечение анализа проектных решений
- •3.2. Математические модели в процедурах анализа
- •3.2. Математические модели в процедурах анализа на макроуровне
- •3. Математическое обеспечение анализа проектных решений
- •3 2. Математические модели в процедурах анализа на макроуровне
- •3. Математическое обеспечение анализа проектных решений
- •3 2 Математические модели в процедурах анализа на макроуровне
- •3. Математическое обеспечение анализа проектных решений
- •3.2, Математические модели в процедурах анализа на макроуровне
- •51,52 И рессор с1,с2. На рис. 3.7, б приведена эквивалентная схема для верти-
- •3 Математическое обеспечение анализа проектных решений
- •3 2 Математические модели в процедурах анализа на макроуровне
- •4 Основы автоматизированного у у
- •3. Математическое обеспечение анализа проектных решений
- •3.2. Математические модели в процедурах анализа на макроуровне
- •3. Математическое обеспечение анализа проектных решений
- •1Ист с помощью очевидного выражения
- •3.3. Методы и алгоритмы анализа на макроуровне
- •3.3. Методы и алгоритмы анализа на макроуровне
- •3. Математическое обеспечение анализа проектных решений
- •3 3 Методы и алгоритмы анализа на макроуровне
- •3. Математическое обеспечение анализа проектных решений
- •3.3. Методы и алгоритмы анализа на макроуровне
- •3. Математическое обеспечение анализа проектных решений
- •3.3. Методы и алгоритмы анализа на макроуровне
- •3. Математическое обеспечение анализа проектных решений
- •320 Кбайт. Если же взять характерное значение 9 для среднего числа ненулей
- •3.3. Методы и алгоритмы анализа на макроуровне
- •3. Математическое обеспечение анализа проектных решений
- •3.3. Методы и алгоритмы анализа на макроуровне
- •3 Математическое обеспечение анализа проектных решений
- •3.3. Методы и алгоритмы анализа на макроуровне
- •I Рабочая программа
- •3. Математическое обеспечение анализа проектных решений
- •3.4. Математическое обеспечение анализа на микроуровне
- •3.4. Математическое обеспечение анализа на микроуровне
- •3 Математическое обеспечение анализа проектных решений
- •1) Метод коллокаций, в котором, используя (3.35), формируют п уравнений
- •2) Метод наименьших квадратов, основанный на минимизации квадра-
- •3) Метод Галеркина, с помощью которого минимизируются в среднем по
- •3.4. Математическое обеспечение анализа на микроуровне
- •3. Математическое обеспечение анализа проектных решений
- •3.5. Математическое обеспечение анализа
- •3 5 Математическое обеспечение анализа на функционально-логическом уровне
- •3.5. Математическое обеспечение анализа на функционально-логическом уровне
- •3. Математическое обеспечение анализа проектных решений
- •3.5. Математическое обеспечение анализа на функционально-логическом уровне
- •3. Математическое обеспечение анализа проектных решений
- •3.6. Математическое обеспечение анализа на системном уровне
- •3.6. Математическое обеспечение анализа
- •3. Математическое обеспечение анализа проектных решений
- •3.6. Математическое обеспечение анализа на системном уровне
- •3. Математическое обеспечение анализа проектных решений
- •3 6 Математическое обеспечение анализа на системном уровне
- •3 Математическое обеспечение анализа проектных решений
- •3.6. Математическое обеспечение анализа на системном уровне
- •3. Математическое обеспечение анализа проектных решений
- •3.6. Математическое обеспечение анализа на системном уровне
- •3.6. Математическое обеспечение анализа на системном уровне
- •3. Математическое обеспечение анализа проектных решений
- •3.6. Математическое обеспечение анализа на системном уровне
- •3. Математическое обеспечение анализа проектных решений
- •1000 Заказов.
- •3.6. Математическое обеспечение анализа на системном уровне
- •3. Математическое обеспечение анализа проектных решений
- •3.6. Математическое обеспечение анализа на системном уровне
- •3. Математическое обеспечение анализа проектных решений
- •3 6 Математическое обеспечение анализа на системном уровне
- •3. Математическое обеспечение анализа проектных решений
- •3.7. Математическое обеспечение подсистем
- •3 7 Математическое обеспечение подсистем машинной графики
- •1) Модель есть список граней, каждая грань представлена упорядоченным
- •2) Модель есть список ребер, для каждого ребра заданы инцидентные вер-
- •3. 7. Математическое обеспечение подсистем машинной графики
- •3. Математическое обеспечение анализа проектных решений
- •3. 7. Математическое обеспечение подсистем машинной графики
- •3. Математическое обеспечение анализа проектных решений
- •5) Переход к пункту 3, пока не достигнута точка в.
- •4. Математическое обеспечение синтеза проектных решений
- •4.1. Постановка задач параметрического синтеза
- •4. Математическое обеспечение синтеза проектных решений
- •XeDx у6[1 т] '
- •4.2. Обзор методов оптимизации
- •4.2. Обзор методов оптимизации
- •4. Математическое обеспечение синтеза проектных решений
- •1) Способом вычисления направления поиска g(Xt) в формуле (4.6);
- •2) Способом выбора шага /г;
- •3) Способом определения окончания поиска.
- •4.2. Обзор методов оптимизации
- •4 Математическое обеспечение синтеза проектных решений
- •4.2. Обзор методов оптимизации
- •6 Основы автоматизированного
- •4 Математическое обеспечение синтеза проектных решений
- •4.2. Обзор методов оптимизации
- •4 Математическое обеспечение синтеза проектных решений
- •4.2. Обзор методов оптимизации
- •4. Математическое обеспечение синтеза проектных решений
- •4 2 Обзор методов оптимизации
- •2) Для метода внешней точки при таких же ограничениях
- •3) В случае ограничений типа равенств
- •4. Математическое обеспечение синтеза проектных решений
- •4.2. Обзор методов оптимизации
- •4. Математическое обеспечение синтеза проектных решений
- •4.3. Постановка задач структурного синтеза
- •4.3. Постановка задач структурного синтеза
- •4. Математическое обеспечение синтеза проектных решений
- •4 3 Постановка задач структурного синтеза
- •1) Абсолютными;
- •2) Номинальными (классификационными), значения шкалы представляют
- •3) Порядковыми, если между объектами АиВ установлено одно из следую-
- •4) Интервальными, отражающими количественные отношения интервалов:
- •4. Математическое обеспечение синтеза проектных решений
- •4. Математическое обеспечение синтеза проектных решений
- •4 3 Постановка задач структурного синтеза
- •4. Математическое обеспечение синтеза проектных решений
- •4. Математическое обеспечение синтеза проектных решений
- •2) Ветвление: разбиение ма на несколько подмножеств м ; 3) вычисление
- •4.4. Методы структурного синтеза в системах автоматизированного проектирования
- •4. Математическое обеспечение синтеза проектных решений
- •1) Для этих задач не известны полиномиальные алгоритмы точного решения;
- •2) Любые задачи внутри этого класса могут быть сведены одна к другой за
- •Xk. Вместо перебора точек во всем пространстве d осуществляется перебор
- •4.4. Методы структурного синтеза в системах автоматизированного проектирования
- •4. Математическое обеспечение синтеза проектных решений
- •4 4 Методы структурного синтеза в системах автоматизированного проектирования
- •4.4. Методы структурного синтеза в системах автоматизированного проектирования
- •4. Математическое обеспечение синтеза проектных решений
- •1, Означает, что вершина k попадает в Ар если же k-й аллель равен 0, то в а2.
- •4 4 Методы структурного синтеза в системах автоматизированного проектирования
- •4. Математическое обеспечение синтеза проектных решений
- •4.4. Методы структурного синтеза в системах автоматизированного проектирования
- •4. Математическое обеспечение синтеза проектных решений
- •4 4. Методы структурного синтеза в системах автоматизированного проектирования
- •IS"2) имеющий максимальную суммарную связность с уже размещенными
- •7 Основы автоматизированного 193
- •4. Математическое обеспечение синтеза проектных решений
- •2) Разделение работ на несколько групп и учет дополнительных затрат на пере-
- •4. Математическое обеспечение синтеза проектных решений
- •4. Математическое обеспечение синтеза проектных решений
- •5.1. Функции сетевого программного обеспечения
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.1. Функции сетевого программного обеспечения
- •Idl описание интерфейса преобразуется в программные модули, называемые
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.1. Функции сетевого программного обеспечения
- •Internet, и протоколы iso-ip (iso 8473), относящиеся к семиуровневой модели
- •5 Методическое и программное обеспечение автоматизированных систем
- •5.1. Функции сетевого программного обеспечения
- •21, У клиента могут быть различные номера портов, в том числе несколько в
- •Internet может работать на удаленном компьютере. Связь устанавливается при
- •5 Методическое и программное обеспечение автоматизированных систем
- •5.1. Функции сетевого программного обеспечения
- •5 Методическое и программное обеспечение автоматизированных систем
- •5.1. Функции сетевого программного обеспечения
- •I, u; текст между открывающей и закрывающей командами будет выделен
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.1. Функции сетевого программного обеспечения
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.1. Функции сетевого программного обеспечения
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.2. Система автоматизированного проектирования в машиностроении
- •5.2. Системы автоматизированного проектирования
- •5 Методическое и программное обеспечение автоматизированных систем
- •5.2. Система автоматизированного проектирования в машиностроении
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.2. Система автоматизированного проектирования в машиностроении
- •Internet, оформления 2d-документации. Построена на графическом ядре acis. Имеется
- •5 Методическое и программное обеспечение автоматизированных систем
- •5.3. Система автоматизированного проектирования в радиоэлектронике
- •5.3. Системы автоматизированного проектирования
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.3. Система автоматизированного проектирования в радиоэлектронике
- •Verilog. При конструкторском проектировании для описания топологии сбис
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.3. Система автоматизированного проектирования в радиоэлектронике
- •5 Методическое и программное обеспечение автоматизированных систем
- •5.3. Система автоматизированного проектирования в радиоэлектронике
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.3. Система автоматизированного проектирования в радиоэлектронике
- •5. Методическое и программное обеспечение автоматизированных систем
- •2000 Систему сквозного проектирования рэа Protel 99se собственной разработки, име-
- •5.3. Система автоматизированного проектирования в радиоэлектронике
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.4. Автоматизированные системы управления
- •5.4. Автоматизированные системы управления
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.4. Автоматизированные системы управления
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.4. Автоматизированные системы управления
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.4. Автоматизированные системы управления
- •5. Методическое и программное обеспечение автоматизированных систем
- •VxWorks в случае использования аппаратуры на базе vmEbus.
- •Isa, pci, CompactPci, pc/104, vme, std32 и др.
- •Internet, что позволяет провести предварительную разработку прикладной программы,
- •5. Методическое и программное обеспечение автоматизированных систем
- •5 5 Инструментальные средства концептуального проектирования
- •5.5. Инструментальные средства концептуального
- •5. Методическое и программное обеспечение автоматизированных систем
- •Idefo (Integrated deFinition 0).
- •5.5. Инструментальные средства концептуального проектирования
- •5 Методическое и программное обеспечение автоматизированных систем
- •5 5 Инструментальные средства концептуального проектирования
- •5. Методическое и программное обеспечение автоматизированных систем
- •Informix-4gl, jam, NewEra, xal.
- •5.5. Инструментальные средства концептуального проектирования
- •Idefo - это более четко очерченное представление методики sadt.
- •5. Методическое и программное обеспечение автоматизированных систем
- •Icom «Разработать сапр». В качестве исполнителей фигурируют специали-
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.5. Инструментальные средства концептуального проектирования
- •2) Объектно-ориентированные, выражаемые диаграммами перехода состояний,
- •5. Методическое и программное обеспечение автоматизированных систем
- •Idef1 -методика информационного (мифологического) проектирования при-
- •Idef1x, в котором имеется ясный графический язык для описания объектов и
- •5.5. Инструментальные средства концептуального проектирования
- •9 Основы автоматизированного 257
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.5. Инструментальные средства концептуального проектирования
- •5 Методическое и программное обеспечение автоматизированных систем
- •Idef IX-диаграммы, словари данных, проводится документирование и проверяется не-
- •5 5 Инструментальные средства концептуального проектирования
- •International Limited) с вариацией типов меток, расе (Grossenbacher software) с про-
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.5. Инструментальные средства концептуального проектирования
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.5. Инструментальные средства концептуального проектирования
- •5 Методическое и программное обеспечение автоматизированных систем
- •5.5. Инструментальные средства концептуального проектирования
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.5. Инструментальные средства концептуального проектирования
- •5 Методическое и программное обеспечение автоматизированных систем
- •Interface), модуль связи с прикладной частью и собственно прикладную часть, включаю-
- •5.6. Системные среды автоматизированных систем
- •5.6. Системные среды автоматизированных систем
- •5. Методическое и программное обеспечение автоматизированных систем
- •4. Транзакции могут быть длительными и трудоемкими. Транзакцией на-
- •5. Иерархическая структура проектных данных и, следовательно, отраже-
- •10 Основы автоматизированного 273
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.6. Системные среды автоматизированных систем
- •5 Методическое и программное обеспечение автоматизированных систем
- •5. Методическое и программное обеспечение автоматизированных систем
- •1) Методология автоматизированного проектирования, в соответствии с ко-
- •2) Объектно-ориентированная методология, в соответствии с которой мно-
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.6. Системные среды автоматизированных систем
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.6. Системные среды автоматизированных систем
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.6. Системные среды автоматизированных систем
- •5. Методическое и программное обеспечение автоматизированных систем
- •5.6. Системные среды автоматизированных систем
- •Validate Репозиторий
- •5 Методическое и программное обеспечение автоматизированных систем
- •Iso 15531 Manufacturing management data (Mandate), iso 18876 Integration of
- •Industrial Data for Exchange, Access, and Sharing (iideas), iso 8879 Standard
- •6. Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •20,24 И 26, описывающие общие ресурсы, логическую модель поставляемой библиоте-
- •Часть 31, посвященная интерфейсу геометрического программирования.
- •Iso no Parametrics решает как краткосрочные, так и перспективные задачи.
- •6.1. Обзор cals-стандартов
- •Xml и др. Некоторые свойства exist уже рассматривались рабочей группой
- •6. Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •6.2. Языки разметки
- •6.2. Языки разметки
- •1. Единообразное представление структуры данных, классификация и иден-
- •2. Дополнение моделей промышленных изделий, задаваемых в настоящее
- •3. Обмен данными между различными ас, электронными или традицион-
- •6. Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •6.2. Языки разметки
- •100Base-X. Gigabit Ethernet.
- •6. Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •6.3. Step-технология
- •6.3. Step-технология
- •6 Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •6.3. Step-технология
- •2) Схема-цель, задающая сущности, которые должны быть в создаваемой частной моде-
- •6. Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •6.3. Step-технология
- •104, Посвященный методу конечных элементов. Описание стандарта на языке
- •6 Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •6} Оформление документов (шрифты, цвета);
- •7) Размеры (допуски);
- •8) Группирование деталей по тем или иным признакам.
- •1. Ссылки на заимствованные из стандартов iso 10303-41,10303-42 и 10303-44 интегри-
- •2. Описания некоторых обобщенных типов, объединяющих с помощью оператора
- •3. Описания сущностей, выражающих конструкции изделий. Представлены шесть
- •4. Описание других используемых сущностей, относящихся к конфигурации изделия,
- •63 Step-технология
- •II Основы автоматизированного 305
- •6. Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •6.4 Краткое описание языка Express
- •6.4. Краткое описание языка Express
- •6. Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •6.4. Краткое описание языка Express
- •X,y,z: real; Рис. 6.5. Атрибуты в
- •X,y,z: real;
- •Integer (целые числа);
- •24 Символов, то:
- •Integer | |
- •6.4. Краткое описание языка Express
- •Vl,v2,v3: volume;
- •6. Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •V Ссылка на имя выделяемого типа означает, что
- •X: integer;
- •X,y,z: real;
- •6.4. Краткое описание языка Express
- •6.4. Краткое описание языка Express
- •InternaMocation: optional label;
- •6. Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •Id: identifier;
- •I kohtj о
- •6.4. Краткое описание языка Express
- •6. Информационная поддержка этапов жизненного цикла изделий — cals-технологии
- •6.5. Стандарты управления качеством
- •Iso в 1987 г. И проходящих корректировку приблизительно каждые пять лет.
- •6 5 Стандарты управления качеством промышленной продукции
- •Iso 8402: «Качество - совокупность характеристик продукта, относящихся к
- •Iso 9000:2000 Fundamentals and vocabulary (Основы и терминология);
- •Iso 9001:2000 Requirements (Требования);
- •Iso 9004:2000 Guidelines for performance improvement (Руководство по раз-
- •20 Элементов качества сворачиваются в четыре группы:
- •Vrml - Virtual Reality Modeling Language
- •105005, Москва, 2-я Бауманская, 5
- •432980, Г. Ульяновск, ул. Гончарова, 14__
4.2. Обзор методов оптимизации
Методы одномерной оптимизации
К методам одномерной оптимизации относятся методы дихотомического
деления, золотого сечения, чисел Фибоначчи, полиномиальной аппроксимации
и ряд их модификаций.
Пусть задан отрезок [А, В], на котором имеется один минимум (в общем
случае нечетное число минимумов). Согласно методу дихотомического де-
ления (рис. 4.3, а) отрезок делят пополам и в точках, отстоящих от центра С
отрезка на величину допустимой погрешности q, рассчитывают значения целе-
вой функции F(C + q) и F(C - q). Если окажется, что F(C + q) > F(C - q), то
минимум находится на отрезке [А,С], если F(C + q) < F(C - q), то минимум —
на [С,В], если F(C + q) = F(C - q) — на [С - q, С + q]. Таким образом, на
следующем шаге вместо отрезка [А, В] нужно исследовать суженный отрезок
[Л,С], [С, В] или [С - q,С + q]. Шаги повторяются, пока длина отрезка не
уменьшится до значения погрешности q. Таким образом, требуется не более N
шагов, где N— ближайшее к log ((B-A)/q) целое значение, но на каждом шаге
целевую функцию следует вычислять дважды.
В соответствии с методом золотого сечения (рис. 4.3, б) внутри отрезка
[А,В] выделяют две промежуточные точки Ct и Z), на расстоянии 5 = aL от его
конечных точек, где L — В - А — длина отрезка. Затем вычисляют значения
целевой функции F(x) в точках С, и £>,. Если F(C:) < F(Dl), то _______минимум нахо-
дится на отрезке [A,D^\, если F(C{) > F(Dl)), то — на отрезке [СГ В], если
F(C}) = F(Z)j) — на отрезке [С,, Z>J. Следовательно, вместо отрезка [А,В] те-
перь можно рассматривать отрезок [A,D^\, [C}, В] или [С,, D^, т. е. длина от-
резка уменьшилась не менее чем в L/(L - aL) = 1/(1 - а) раз. Если подобрать
значение а так, что в полученном отрезке меньшей длины одна из промежу-
точных точек совпадет с промежуточной точкой от предыдущего шага, т. е. в
случае выбора отрезка [А, £>,] точка D2 совпадет с точкой С,, а в случае выбо-
ра отрезка [С,, В] точка С2 — с точкой D{, то это позволит сократить число
вычислений целевой функции на всех шагах (кроме первого) в 2 раза.
Условие получения такого значения а формулируется следующим образом:
(1 -2d)Lk = aLk ,, откуда с учетом того, что Lk /Lk_l
:= 1/(1 -а), имеем а = 0,382.
Это значение и называют золотым сечением.
F(x) I
А С В х
а
Рис. 4.3. Методы дихотомического деления (а) и золотого сечения (б)
А С, Z), В х
б
159
4 Математическое обеспечение синтеза проектных решений
Таким образом, требуется не более N шагов и N + 1 вычисление целевой
функции, где N можно рассчитать, используя соотношение (В - А)/Е = (1 - d)N
при заданной погрешности Е определения экстремума.
Согласно методу чисел Фибоначчи, используют числа Фибоначчи R, по-
следовательность которых образуется по правилу Ri+2 = Ri+t + Rt при R0=Rl = 1,
т. е. ряд чисел Фибоначчи имеет вид 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ...
Метод аналогичен методу золотого сечения с тем отличием, что коэффициент
а равен отношению Ri_2/Ri, начальное значение / определяется из условия, что
R: должно быть наименьшим числом Фибоначчи, превышающим величину
•(В-А)/Е, где Е— заданная допустимая погрешность определения экстремума.
Так, если (В -А)/Е = 100, то начальное значение / = 12, поскольку ./?,= 144, и
а = 55/144 = 0,3819, на следующем шаге будет а = 34/89 = 0,3820 и т. д.
В соответствии с методом полиномиальной аппроксимации при аппрок-
симации F(x) квадратичным полиномом
Р(х) = а0 + а^х + а2х2 (4.7)
выбирают промежуточную точку С и в точках А, В, С вычисляют значения
целевой функции. Далее решают систему из трех алгебраических уравнений,
полученных подстановкой в (4.7) значений А, В, С вместо х и вычисленных
значений функции вместо Р(х). В результате становятся известными значения
коэффициентов ak в (4.7), и, исходя из условия dP(x)/dx = 0, определяют экстре-
мальную точку Э полинома. Например, если точка С выбрана в середине от-
резка [А, В], то Э = С + (С - A)(F(A) - F(B)) I (2(F(A) - 2F(C) + F(B))).
Методы безусловной оптимизации
Среди методов нулевого порядка в САПР находят применение методы Ро-
зенброка, конфигураций, деформируемого многогранника, случайного поиска.
К методам с использованием производных относятся методы наискорейшего
спуска, сопряженных градиентов, переменной метрики.
Метод Розенброка является улучшенным вариантом метода покоординат-
ного спуска.
Метод покоординатного спуска характеризуется выбором направлений по-
иска поочередно вдоль всех п координатных осей, шаг рассчитывается на
основе одномерной оптимизации, критерий окончания поиска \\t - \k_ J < е,
где е — заданная точность определения локального экстремума, п — размер-
ность пространства управляемых параметров. Траектория покоординатного
спуска для примера двумерного пространства управляемых параметров пока-
зана на рис. 4.4, где Xt — точки на траектории поиска, xt — управляемые пара-
метры. Целевая функция представлена своими линиями равного уровня, около
каждой линии записано соответствующее ей значение F(X). Очевидно, что Э
есть точка минимума.
160
