
- •Список сокращений
- •Введение
- •Наночастицы
- •Состояние проблемы
- •Определение наночастиц
- •Классификация наночастиц
- •Свойства наночастиц
- •Пути поступления и биокинетика наночастиц
- •Системные эффекты наночастиц
- •Иисследование цитотоксичности наночастиц
- •Обьекты, методы исследований, приборы, оборудование
- •Наночастицы, используемые в экспериментах in vitro
- •Культуры клеток, используемые для изучения токсичности in vitro
- •Методы изучения цитотоксичности наноматериалов в культурах клеток млекопитающих
- •Перечень испытательного оборудования
- •Результаты исследований
- •Влияние наночастиц серебра на жизнеспособность клеток линий а549, shr и сублинии fl по результатам мтт-теста
- •Влияние наночастиц на жизнеспособность лимфоцитов человека по результатам мтт-теста
- •Изучение цитотоксичности наноматериалов для клеток линии а549 с помощью окраски метиленовым синим
- •Изучение жизнеспособности клеток в культуре по активности лактатдегидрогеназы в среде культивирования
- •Заключение
- •Список литературы
Свойства наночастиц
Новые материалы разнообразны и обладают уникальными свойствами: высокой прочностью, теплоизолирующей способностью, противомикробным действием, сверхпроводимостью, заданной проницаемостью и т.д. Последнее время определение наночастиц связывают не с их размером, а с проявлением у них новых свойств, отличных от свойств объемной фазы. При переходе вещества от макроразмеров к размерам, всего на один-два порядка больше молекулярных, резко меняются его свойства – с увеличением удельной поверхностной энергии изменяется его поверхностное натяжение, температура плавления и температуры структурных переходов, может измениться сама структура, его электронные характеристики, то есть весь спектр физико-химических свойств, становится иным, чем для веществ в макросостоянии. Поэтому критерием принадлежности частицы того или иного вещества к классу наночастиц правильнее считать сопоставление ее размера с корреляционным радиусом того или иного физического явления (например, с длиной свободного пробега электронов или фононов, длиной когерентности в сверхпроводнике, размерами магнитного домена или зародыша твердой фазы).
Малые размеры наночастиц приводят к многократному увеличению удельной поверхность материалов, что способствует транзиту самых различных веществ за счет увеличения адсорбционной емкости. Возрастает химическая реакционная способность и каталитические свойства вещества. На эти параметры прямо влияют также физико-химические свойства, включая форму, поверхностную структуру, полярность. Поэтому увеличивается вероятность развития различных процессов внутри отдельных клеточных структур: органелл, биологических мембран, проникновение и контакт с клеточным ядром и ДНК. Во многом цитотоксические свойства наночастиц объясняются их способностью к агрегации внутри клеток[7].
По информации, имеющейся в международной базе данных, количество зарегистрированных наименований наноматериалов в настоящее время превысило 2900, среди них 714 – углеродные нанотрубки и 85 – наночастицы серебра. Международные организации и правительства развитых стран проявляют огромный интерес к проблеме развития нанотехнологий.
Пути поступления и биокинетика наночастиц
Большинство исследований по оценке биологического действия наночастиц проводились на млекопитающих и были направлены на изучение эффектов со стороны дыхательной системы. Однако имеются и другие пути воздействия, такие как кожа, желудочно-кишечный тракт (рисунок 1).
Рисунок 1 – Биокинетика наночастиц в
организме
Следует принимать во внимание тот факт, что механизмы защиты, специфичные для того или иного пути поступления, способные оградить организм от вредных химических веществ, не всегда состоятельны в отношении наночастиц [8]. Необходимо учитывать также, что наночастицы могут попадать в кровеносную систему как из окружающей среды, так и при терапевтических вмешательствах, а также в результате поступления в организм любыми другими путями.
Абсорбция и распределение в органах дыхания. В ходе распределения и удаления в дыхательной системе наночастицы и частицы большего размера ведут себя не одинаково. Основной механизм распределения наночастиц – диффузия при столкновении с молекулами воздуха. Электростатическое осаждение имеет место только в том случае, если наночастицы несут существенный электрический заряд. Наночастицы могут оседать в носоглотке, трахеобронхиальной области и в альвеолах. Имеются защитные механизмы, которые на всем протяжении дыхательных путей обеспечивают освобождение слизистых оболочек от частиц, попадающих при вдыхании. После оседания в дыхательных путях наночастицы легко перемещаются, покидают легкие и достигают других органов-мишеней различными путями и механизмами.
Наиболее важный механизм удаления твердых частиц обеспечивается альвеолярными макрофагами путем фагоцитоза[9]. Однако в экспериментах на крысах было показано, что лишь 20% полистирольных наночастиц было обнаружено в макрофагах, тогда как для частиц диаметром 0,5, 3 и 10 мкм этот показатель составил 80 %. Таким образом, большая часть наночастиц поступает в эпителий и интерстиций.
Результаты исследований ультратонких частиц дыма и наночастиц диоксида титана (TiO2) показали, что наночастицы после оседания в легких путем трансцитоза через эпителий дыхательных путей попадают в интерстиций. Так как проникновение наночастиц через альвеолярный эпителий в большей мере характерно для крупных млекопитающих (собаки, приматы), чем для грызунов, такой путь имеет место в организме человека. Достигнув межклеточного пространства в легких, наночастицы попадают в кровеносную и лимфатическую систему. При интратрахеальном введении крысам наночастиц золота обнаружено, что через 30 минут после воздействия большая часть наночастиц аккумулировалась в тромбоцитах легочных капилляров. Транслокация через эпителиальные и эндотелиальные мембраны определяется размером частиц, физико-химическими свойствами поверхности и, возможно, зарядом[10].
Альбумин, наиболее распространенный белок в плазме и интерстиции, способствует эндоцитозу наночастиц подобно лецитину и фосфолипидам. Так, например, частицы полистирола размером 240 нм проникали через альвеолярно-капиллярный барьер в том случае, если были покрыты лецитином. Поэтому одновременное присутствие альбумина и фосфолипидов на поверхности альвеолярного эпителия может быть важным фактором, облегчающим поглощение наночастиц эпителиальными клетками после распределения в альвеолярном пространстве.
Абсорбция и распределение в нервной системе. Транслокация твердых частиц в дыхательных путях может происходить посредством аксонов нейронов. В назальной и трахеобронхиальной части дыхательных путей находятся чувствительные окончания обонятельного и тройничного нервов. Обонятельный нерв может являться путем поступления наночастиц в ЦНС человека. Имеются также дополнительные пути – через тройничный нерв, окончания чувствительных нервов, находящиеся в трахее и бронхах, как показано в экспериментах при интраназальной инстилляции наночастиц.
Воздействие через желудочно-кишечный тракт и кожу. Наночастицы, которые удаляются из дыхательной системы мукоцилиарным эпителием, могут попадать в ЖКТ. Наночастицы могут также поступать в ЖКТ с системами доставки лекарств. Многочисленные исследования показали, что наночастицы при попадании в ЖКТ быстро выводятся из организма. Другой потенциально важный путь поступления – через кожу. Установлено, что наночастицы, поступившие в дерму, локализуются впоследствии с помощью макрофагов кожи и дендритических клеток в регионарных лимфоузлах. Это поднимает вопрос о потенциальном изменении иммунного ответа на наночастицы после взаимодействия макрофагов и дендритических клеток, содержащих наночастицы, с Т-лимфоцитами.
Легочная канцерогенность. Малотоксичные, плохо растворимые частицы, такие как углерод, диоксид титана индуцируют хроническое воспаление, фиброз, неопластические изменения и рак легких у крыс. Опухоли легких, связанные с воздействием таких частиц, происходят из альвеоцитов 2-го типа (бронхоальвеолярные опухоли), либо из участков сквамозной метаплазии (эпидермоидные опухоли). Продолжительное присутствие высоких уровней нетоксичных частиц приводит к ухудшению их выведения альвеолярными макрофагами, затем вызывает их быстрое накопление, хроническое воспаление, фиброз, опухолеобразование. Воспалительный процесс является основной причиной возникновения опухолей легких, так как наночастицы реализуют мутагенный потенциал и действуют на пролиферативную активность[11].