Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4. БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ.DOC
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.49 Mб
Скачать

Флавин

(изоаллоксазин)

Рибитол

Фосфат

Рибофлавин (витамин В2 )

Два атома водорода, отнимаемые флавиновыми дегидрогеназами от восстановленного НАД (НАДН2) присоединяются к флавину, выполняющего роль акцептора водорода. В результате этой стадии образуется восстановленная форма кофермента - ФМНН2:

НАД Н2 + ФМН НАД + ФМН Н2

В некоторых случаях флавиновые дегидрогеназы, подобно никотинамидным, отнимают два атома водорода непосредственно от окисляемых веществ. Такие флавиновые дегидрогеназы используют кофермент ФАД (флавин-аденин-динуклеотид), похожий по строению на ФМН и тоже содержащий витамин В2:

АН2 + ФАД А + ФАД Н2

Окисляемое Окисленное

вещество вещество

С ледующая группа ферментов - цитохромы. Эти ферменты участвуют только в переносе электронов. По строению цитохромы похожи на одну из субъединиц гемоглобина. Молекула цитохрома состоит из полипептида и гема. Но в отличие от гемоглобина железо, входящее в гем цитохромов, имеет переменную валентность. Способность железа обратимо переходить из окисленной формы в восстановленную (Fe3+ + е Fe2+) обеспечивает возможность переноса электронов данными ферментами.

С помощью цитохромов (их имеется несколько: b, c, a, a3) электроны от восстановленных коферментов ФМНН2 и ФАДН2 передаются на молекулярный кислород (О2), который при этом переходит в активную, анионную форму - О2-. Далее, активный кислород (О2-) связывается с ионами водорода (протонами), которые тоже отщепляются от ФМНН2 или от ФАДН2. Присоединение ионов водорода к аниону кислорода приводит к образованию воды.

Таким образом, на всем протяжении дыхательной цепи наблюдается передвижение электронов. Движение электронов вызвано тем, что все участники дыхательной цепи располагаются по мере возрастания их окислительно-восстановительных потенциалов.

Окислительно-восстановительный потенциал или редокс-потенциал характеризует способность вещества принимать и удерживать электроны. Поэтому электроны переносятся от вещества с низким редокс-потенциалом к веществу с более высоким потенциалом.

Поскольку самое низкое значение редокс-потенциала имеет окисляемое вещество, а самое высокое – кислород, то в итоге электроны от окисляемого вещества поступают на молекулу кислорода.

Как уже отмечалось, движение электронов по дыхательной цепи сопровождается выделением энергии. Около половины энергии движения электронов аккумулируется в макроэргических связях молекул АТФ. Другая часть энергии выделяется в виде тепла. Синтез АТФ происходит при переносе электронов с НАДН2 на ФМН, с цитохрома b на цитохром с и с цитохрома a на цитохром a3. Всего при переносе двух атомов водорода на кислород (т.е. в расчете на одну образовавшуюся молекулу воды) синтезируется 3 молекулы АТФ.

Некоторые субстраты (жирные кислоты, янтарная кислота и др.) имеют более высокий редокс-потенциал, чем НАД. Поэтому они не могут окисляться никотинамидными дегидрогеназами. В этом случае отнятие атомов водорода от таких субстратов осуществляется флавиновыми дегидрогеназами. Из-за отсутствия никотинамидных дегидрогеназ при окислении таких веществ образуется только две молекулы АТФ.

На рис. 6 представлена схема тканевого дыхания, включающая все группы ферментов.

Рис. 6. Схема тканевого дыхания

Образование АТФ в процессе тканевого дыхания часто обозначается терминами: окислительное фосфорилирование, дыхательное фосфорилирование, аэробное фосфорилирование или аэробный синтез АТФ.

В сутки в организме за счет тканевого дыхания возникает не менее 40 кг АТФ, а у спортсменов еще больше. Поэтому этот процесс потребляет большое количество окисляемых веществ и кислорода.

При незначительной потребности клеток в АТФ тканевое дыхание протекает с низкой скоростью. Если клетка начинает использовать большое количество АТФ, то скорость тканевого дыхания возрастает и может достигнуть максимальных величин. Такой характер изменения скорости обусловлен тем, что активатором ферментов тканевого дыхания является избыток АДФ, который возникает в клетке только при интенсивном использовании АТФ.

Митохондрии, в которых протекает тканевое дыхание, имеются во всех клетках (кроме красных клеток крови) и представляют собою вытянутые палочковидные образования длиной 2-3 мкм и толщиной около 1 мкм. Количество митоходрий в клетках может достигать тысячи и более. Митохондрии снаружи окружены двойной мембраной. Внешняя мембрана гладкая, а внутренняя складчатая, с большой поверхностью. Ферменты тканевого дыхания встроены во внутреннюю мембрану и располагаются в ней в виде отдельных скоплений, называемых «дыхательными ансамблями» Каждый дыхательный ансамбль содержит все необходимые ферменты для обеспечения переноса электронов в процессе тканевого дыхания. Благодаря строго упорядоченному расположению ферментов в дыхательных ансамблях передвижение электронов по дыхательной цепи осуществляется с большой скоростью.

В клетках митохондрии часто располагаются в том месте, где используется энергия АТФ. В мышечных клетках митохондрии находятся около сократительных элементов – миофибрилл и обеспечивают энергией их сокращение в процессе мышечной работы. Под влиянием систематических тренировок количество митохондрий в мышечных клетках значительно увеличивается.

Как выше отмечалось, тканевое дыхание (митохондриальное окисление) является основным способом биологического окисления, т.е. окисления органических соединений в живом организме. Однако наряду с тканевым дыханием в организме еще имеются и другие способы окисления.