Флавин (изоаллоксазин)
ФосфатРибитол
Рибофлавин
(витамин В2
)
Два атома водорода, отнимаемые флавиновыми дегидрогеназами от восстановленного НАД (НАДН2) присоединяются к флавину, выполняющего роль акцептора водорода. В результате этой стадии образуется восстановленная форма кофермента - ФМНН2:
НАД
Н2
+
ФМН НАД + ФМН Н2
В некоторых случаях флавиновые дегидрогеназы, подобно никотинамидным, отнимают два атома водорода непосредственно от окисляемых веществ. Такие флавиновые дегидрогеназы используют кофермент ФАД (флавин-аденин-динуклеотид), похожий по строению на ФМН и тоже содержащий витамин В2:
АН2 + ФАД А + ФАД Н2
Окисляемое Окисленное
вещество вещество
С
ледующая
группа ферментов - цитохромы.
Эти ферменты участвуют только в переносе
электронов. По строению цитохромы похожи
на одну из субъединиц гемоглобина.
Молекула цитохрома состоит из полипептида
и гема. Но в отличие от гемоглобина
железо, входящее в гем цитохромов, имеет
переменную валентность. Способность
железа обратимо переходить из окисленной
формы в восстановленную (Fe3+
+ е
Fe2+)
обеспечивает
возможность переноса электронов данными
ферментами.
С помощью цитохромов (их имеется несколько: b, c, a, a3) электроны от восстановленных коферментов ФМНН2 и ФАДН2 передаются на молекулярный кислород (О2), который при этом переходит в активную, анионную форму - О2-. Далее, активный кислород (О2-) связывается с ионами водорода (протонами), которые тоже отщепляются от ФМНН2 или от ФАДН2. Присоединение ионов водорода к аниону кислорода приводит к образованию воды.
Таким образом, на всем протяжении дыхательной цепи наблюдается передвижение электронов. Движение электронов вызвано тем, что все участники дыхательной цепи располагаются по мере возрастания их окислительно-восстановительных потенциалов.
Окислительно-восстановительный потенциал или редокс-потенциал характеризует способность вещества принимать и удерживать электроны. Поэтому электроны переносятся от вещества с низким редокс-потенциалом к веществу с более высоким потенциалом.
Поскольку самое низкое значение редокс-потенциала имеет окисляемое вещество, а самое высокое – кислород, то в итоге электроны от окисляемого вещества поступают на молекулу кислорода.
Как уже отмечалось, движение электронов по дыхательной цепи сопровождается выделением энергии. Около половины энергии движения электронов аккумулируется в макроэргических связях молекул АТФ. Другая часть энергии выделяется в виде тепла. Синтез АТФ происходит при переносе электронов с НАДН2 на ФМН, с цитохрома b на цитохром с и с цитохрома a на цитохром a3. Всего при переносе двух атомов водорода на кислород (т.е. в расчете на одну образовавшуюся молекулу воды) синтезируется 3 молекулы АТФ.
Некоторые субстраты (жирные кислоты, янтарная кислота и др.) имеют более высокий редокс-потенциал, чем НАД. Поэтому они не могут окисляться никотинамидными дегидрогеназами. В этом случае отнятие атомов водорода от таких субстратов осуществляется флавиновыми дегидрогеназами. Из-за отсутствия никотинамидных дегидрогеназ при окислении таких веществ образуется только две молекулы АТФ.
На рис. 6 представлена схема тканевого дыхания, включающая все группы ферментов.
Рис. 6. Схема тканевого дыхания
Образование АТФ в процессе тканевого дыхания часто обозначается терминами: окислительное фосфорилирование, дыхательное фосфорилирование, аэробное фосфорилирование или аэробный синтез АТФ.
В сутки в организме за счет тканевого дыхания возникает не менее 40 кг АТФ, а у спортсменов еще больше. Поэтому этот процесс потребляет большое количество окисляемых веществ и кислорода.
При незначительной потребности клеток в АТФ тканевое дыхание протекает с низкой скоростью. Если клетка начинает использовать большое количество АТФ, то скорость тканевого дыхания возрастает и может достигнуть максимальных величин. Такой характер изменения скорости обусловлен тем, что активатором ферментов тканевого дыхания является избыток АДФ, который возникает в клетке только при интенсивном использовании АТФ.
Митохондрии, в которых протекает тканевое дыхание, имеются во всех клетках (кроме красных клеток крови) и представляют собою вытянутые палочковидные образования длиной 2-3 мкм и толщиной около 1 мкм. Количество митоходрий в клетках может достигать тысячи и более. Митохондрии снаружи окружены двойной мембраной. Внешняя мембрана гладкая, а внутренняя складчатая, с большой поверхностью. Ферменты тканевого дыхания встроены во внутреннюю мембрану и располагаются в ней в виде отдельных скоплений, называемых «дыхательными ансамблями» Каждый дыхательный ансамбль содержит все необходимые ферменты для обеспечения переноса электронов в процессе тканевого дыхания. Благодаря строго упорядоченному расположению ферментов в дыхательных ансамблях передвижение электронов по дыхательной цепи осуществляется с большой скоростью.
В клетках митохондрии часто располагаются в том месте, где используется энергия АТФ. В мышечных клетках митохондрии находятся около сократительных элементов – миофибрилл и обеспечивают энергией их сокращение в процессе мышечной работы. Под влиянием систематических тренировок количество митохондрий в мышечных клетках значительно увеличивается.
Как выше отмечалось, тканевое дыхание (митохондриальное окисление) является основным способом биологического окисления, т.е. окисления органических соединений в живом организме. Однако наряду с тканевым дыханием в организме еще имеются и другие способы окисления.
