
4. Биологическое окисление_____________
4. Биологическое окисление .
Как уже отмечалось, в процессе обмена веществ в организме происходят различные реакции окисления, которые объединяют термином биологическое окисление.
Основным типом биологического окисления является тканевое дыхание, протекающее в клеточных митохондриях (в связи с этим тканевое дыхание еще называют митохондриальным окислением)..
4.1. Тканевое дыхание.
Тканевое дыхание - это основной способ получения АТФ, используемый всеми клетками организма (кроме красных клеток крови).
В процессе тканевого дыхания от окисляемого вещества отнимаются два атома водорода (два протона и два электрона) и по дыхательной цепи, состоящей из ферментов и коферментов, передаются на молекулярный кислород - О2, доставляемый кровью из воздуха во все ткани организма. В результате присоединения атомов водорода к кислороду образуется вода. За счет энергии, выделяющейся при движении электронов по дыхательной цепи, в митохондриях осуществляется синтез АТФ из АДФ и фосфорной кислоты. Обычно образование одной молекулы воды сопровождается синтезом трех молекул АТФ.
В
упрощенном виде тканевое дыхание может
быть представлено следующей схемой:
В качестве субстратов окисления (т.е. веществ, от которых отнимается водород) в тканевом дыхании используются разнообразные промежуточные продукты распада белков, углеводов и жиров. Однако, наиболее часто окислению подвергаются промежуточные продукты цикла трикарбоновых кислот (ЦТК) - цикла Кребса (изолимонная, -кетоглутаровая, янтарная и яблочная кислоты). Цикл Кребса - это завершающий этап катаболизма, в ходе которого происходит окисление остатка уксусной кислоты, входящей в ацетилкофермент А, до СО2 и Н2О. В свою очередь, ацетилкофермент А - это универсальный метаболит организма, в который при своем распаде превращаются главные органические вещества - белки, углеводы и жиры (подробнее см. в главе 5 «Обмен углеводов»).
Тканевое дыхание представляет собой сложный ферментативный процесс. Все ферменты тканевого дыхания делятся на три группы: никотинамидные дегидрогеназы, флавиновые дегидрогеназы и цитохромы.
Никотинамидные дегидрогеназы отнимают два атома водорода от окисляемого субстрата и временно присоединяют их к своему коферменту НАД (никотинамид-аденин-динуклеотид). По строению НАД является динуклеотидом, в котором два нуклеодида соединяются между собой остатками фосфорной кислоты. В состав одного из нуклеодидов в качестве азотистого основания входит амид никотиновой кислоты (никитинамид, витамин РР), вторым нуклеотидом является аденозинмонофосфат (АМФ):
Никотинамид (вит. РР)
Фосфат
Рибоза
Аденин
Рибоза
Фосфат
Отнимаемые от окисляемого вещества атомы водорода присоединяются непосредственно к никотинамиду (отсюда название данных ферментов – никотинамидные дегидрогеназы), при этом НАД переходит в свою восстановленную форму НАДН2:
АН2
+ НАД А +
НАД Н2
Окисляемое Окисленное
вещество вещество
Флавиновые дегидрогеназы отщепляют два атома водорода от образовавшегося НАДН2 и временно присоединяют их к своему коферменту ФМН (флавин-мононуклеотид). По строению этот кофермент является мононуклеотидом, содержащим витамин В2 (рибофлавин):