
- •«Материаловедение и технология конструкционных материалов»
- •Методические указания по программе дисциплины
- •Раздел 1. Введение
- •Раздел 2. Основы металлургического производства
- •2.1 Физико-химические основы металлургического производства
- •2.2. Производство чугуна
- •2.3. Производство стали
- •2.4. Производство цветных металлов
- •2.5 Безотходные и ресурсосберегающие технологии в
- •Раздел 3. Основы получения металлических заготовок
- •Общие сведения о формообразовании заготовок
- •3.2. Основы технологии литейного производства
- •3.3. Основы технологии обработки металлов давлением
- •3.4. Основы технологии сварочного производства
- •Раздел 4. Основы технологии производства заготовок и деталей машин из неметаллических и композиционных материалов
- •4.1. Неметаллические конструкционные материалы
- •4.2. Неорганические конструкционные материалы
- •4.3. Композиционные конструкционные материалы
- •Раздел 5. Теоретическое материаловедение
- •5.1. Строение и свойства чистых металлов
- •5.1.1. Формирование структуры металлов при кристаллизации
- •5.1.2. Вторичная кристаллизация металлов
- •5.2. Строение и свойства металлических сплавов
- •5.2.1.Фазовый состав сплавов
- •5.2.2.Понятия о диаграммах состояния двойных систем
- •5.2.3. Зависимость свойств сплавов от типа диаграммы состояния
- •5.3.Пластическая деформация и разрушение металлов и сплавов
- •5.3.1. Определение стандартных механических свойств
- •5.3.2. Влияние холодной пластической деформации и последующего нагрева на структуру металла
- •5.4. Железо и его сплавы
- •5.4.1. Диаграмма состояния «железо - цементит»
- •5.4.2. Углеродистые стали
- •5.4.3. Чугуны
- •Раздел 6. Практическое материаловедение
- •6.1. Элементы теории термической обработки стали
- •6.2. Технология термической обработки сталей
- •6.3. Технология химико-термической обработки сталей
- •Раздел 7. Основные металлические машиностроительные материалы
- •7.1. Легированные стали и сплавы
- •7.1.1. Основы легирования углеродистых сталей и чугунов
- •7.1.2. Современные легированные стали и сплавы
- •7.2. Цветные металлы и их сплавы
- •Общая схема выполнения контрольных работ
- •Задания к контрольной работе
- •Вариант 4: Опишите технологический процесс производства заготовок зубчатых колес коробки передач легкового автомобиля.
- •Вариант 7: Опишите технологический процесс производства заготовки литого диска колеса легкового автомобиля из титанового сплава.
- •Литература Основная
- •Дополнительная
- •Пример оформления титульного листа
- •Пример разработки технологического процесса
- •Алгоритм решения
- •Исходные материалы для производства чугуна
- •Подготовка руды к плавке
- •1 Неподвижная щека; 2 подвижная щека; 3 ось подвижной щеки;
- •4 Шкив; 5 эксцентриковый вал; 6 шатун; 7 компенсационная пружина;
- •8 Распорные плиты; 9 тяга.
- •Выплавка чугуна в доменной печи
- •Доменный процесс
- •Производство стали
- •11 Поворотный механизм печи;
- •12 Подина печи.
- •1 Сталеразливочный ковш; 2 центровая;
- •3 Прибыльная надставка; 4 изложница;
- •5 Поддон; 6 сифонный кирпич; 7 стопор
- •Производство проволоки
- •Механические свойства стали 65 после обработки по предложенной маршрутной технологии изготовления проволоки
- •«Материаловедение и технология конструкционных материалов»
11 Поворотный механизм печи;
12 Подина печи.
Производят плавку на углеродистой шихте. В печь загружают стальной лом - 90%, чушковый передельный чугун - 8%, электродный бой, кокс, известь — 2%.Опускают электроды и включают ток. При плавлении металл накапливается на подине печи. Во время плавления шихты кислородом воздуха, оксидами шихты и окалины окисляются железо, кремний, фосфор и частично углерод. Оксид кальция из извести и оксиды железа образуют основной железистый шлак, способствующий удалению фосфора из металла.
После нагрева металла и шлака до температуры 1500 - 1540 °С в печь загружают руду и известь и проводят период «кипения»: происходит дальнейшее окисление углерода и удаление серы. Когда содержание углерода будет меньше заданного на 0,1%, кипение прекращают и удаляют шлак из печи. Затем приступают к удалению серы и раскислению металла, доведению химического состава до заданного. Раскисление проводят осаждением и диффузионными методами. После удаления железистого шлака в печь подают силикомарганец и силикокальций - раскислители для осаждающего раскисления. Затем загружают известь, плавиковый шпат и шамотный бой. После расплавления флюсов и образования высокоосновного шлака на его поверхность вводят раскислительную смесь для диффузионного раскисления (известь, плавиковый шпат, кокс, ферросилиций). Углерод кокса и кремний ферросилиция восстанавливают оксид железа в шлаке; содержание его в шлаке снижается, и кислород из металла переходит в шлак. По мере раскисления и понижения содержания FеО шлак становится почти белым. Раскисление под белым шлаком длится 30 — 60 мин.
Для определения химического состава металла берут пробы и при необходимости в печь вводят ферросплавы для получения заданного химического состава металла, после чего выполняют конечное раскисление алюминием и силикокальцием и выпускают металл из печи в ковш., из которого его разливают в изложницы
Для получения качественной стали используют разливку в изложницы сифоном. В этом случае сталью заполняют одновременно несколько изложниц. При заполнении снизу сталь плавно без разбрызгивания заполняет изложницы, в результате чего снижается количество дефектов литого металла (рис.5). В изложницах стать затвердевает, и получают слитки, которые затем подвергают дальнейшей обработке. Поверхность слитка при такой заливке получается чистой, без раковин.
Готовые слитки подвергают обработке давлением - прокатке по следующей схеме:
1) прокатка на крупных обжимных дуо-станах (блюмингах);
2) прокатка блюмов на сортовых станах (через 15 - 19 калибров) требуемого диаметра;
3) резка прутков на определенные длины;
4) правка в холодном состоянии.
Рис. 5. Схема сифонной разливки стали в
изложницы:
1 Сталеразливочный ковш; 2 центровая;
3 Прибыльная надставка; 4 изложница;
5 Поддон; 6 сифонный кирпич; 7 стопор
Для повышения качества стали наиболее широко используют метод электрошлакового переплава (ЭШП) расходуемого электрода. В этом случае металл дополнительно очищают от вредных примесей, устраняют химическую неоднородность и повышают плотность.
П
Рис. 6. Схема электрошлакового переплава расходуемого электрода:
а кристаллизатор; б включение установки; 1 — расходуемый электрод;
2 — шлаковая ванна; 3 — капли электродного металла; 4 — металлическая ванна; 5 — шлаковый гарниссаж; 6 — слиток; 7 — стенка кристаллизатора; 8 — затравка; 9 — поддон
Капли жидкого металла проходят через шлак, образуя под шлаковым слоем металлическую ванну. Перенос капель металла через шлак способствует их активному взаимодействию, удалению из металла серы, неметаллических включений и растворенных газов. Металлическая ванна непрерывно пополняется путем расплавления электрода. Металл под воздействием кристаллизатора постепенно формируется в слиток. После полного застывания слитка поддон опускается, и слиток извлекают из кристаллизатора. В результате ЭШП содержание кислорода в металле снижается в 1,5-2 раза, понижается концентрация серы и фосфора, в 2 - 3 раза уменьшается содержание неметаллических включений, которые становятся меньше и равномерно распределяются в объеме слитка. Слиток отличается плотностью, однородностью, хорошим качеством поверхности, что придает высокие механические и эксплуатационные свойства переплавленным сталям.