
- •1 Рабочая учебная программа
- •1.1 Сведения о преподавателе и контактная информация Им Владимир Алексеевич, к.Т.Н., доцент кафедры сапр
- •1.2 Трудоемкость дисциплины
- •1.3 Характеристика дисциплины
- •1.4 Цель дисциплины
- •1.5 Задачи дисциплины
- •1.6 Пререквизиты
- •1.7 Постреквизиты
- •1.8 Содержание дисциплины
- •1.9 Список основной литературы
- •1.10 Список дополнительной литературы
- •1.11 Критерии оценки знаний студентов
- •Политика и процедуры
- •2 График выполнения и сдачи заданий по дисциплине
- •3 Конспект лекций
- •Раздел 1 Основы проектирования деталей машин
- •Тема 1 Введение (0,25/0,25/0,25 часа)
- •Тема 2 Основы проектирования, конструирования и расчета деталей и узлов машин (0,5/-/- часа)
- •Раздел 2 Соединения деталей машин
- •Тема3 Соединения (0,5/0,25/0,25)
- •Тема 4 Резьбовые соединения (0,5/0,5/0,5 часа)
- •Тема 5 Шпоночные и шлицевые соединения. (0,5/-/- часа)
- •Тема 6 Сварные соединения. (0,5/0,5/0,5 часа)
- •Тема 7 Соединения деталей с натягом (0,25/-/- часа)
- •Тема 8 Заклепочные соединения. (0,5/-/- часа)
- •Тема 9 Клиновые и клеммовые соединения (0,5/-/- часа)
- •Раздел 3 Передачи
- •Тема 10 Механические передачи. (0,5/1/1 часа)
- •6. Распределение энергии двигателя между несколькими исполнительными элементами машины.
- •Характер и причины отказов под действием контактных напряжений
- •Тема 11 Зубчатые передачи. (1/-/- час)
- •Тема 12 Червячные передачи. (1/-/- час)
- •Тема 13 Планетарные передачи (0,25/0,5/0,5 часа)
- •Тема14 Волновые передачи (0,25/0,5/0,5 часа)
- •Тема 15 Фрикционные передачи и вариаторы (0,25/0,5/0,5часа)
- •1. Понятие о фрикционных передачах
- •2. Расчет фрикционных передач
- •Тема 16 Ременные передачи. (1/-/- час)
- •Тема 17 Цепные передачи. (1/-/- час)
- •Раздел 4 Узлы и детали, обслуживающие вращательное движение
- •Тема 18 Валы и оси (1/-/- час)
- •Тема 19 Подшипники качения и скольжения (1/0,5/0,5 часа)
- •Тема 20 Муфты механических приводов. (0,5/-/- часа)
- •Тема 21 Пружины и другие упругие элементы (0,5/0,25/0,25 часа)
- •Тема 22 Корпусные детали (0,25/-/- часа)
- •Тема 23 Основы оценки работоспособности и надежности машин (0,5/0,25/0,25 часа)
- •Тема 24 Автоматизированное проектирование деталей машин (0,25/0,25/0,25)
- •Тема 25 Экономические основы проектирования машин и оборудования (0,5/0,5/0,5 часа)
- •Тема 26 Основы триботехники (0,5/0,25/0,25 часа)
- •Тема 27 Оформление конструкторской документации (0,5/-/- часа)
- •4 Методические указания для выполнения практических (семинарских) занятий
- •Тема 1 Кинематический и силовой расчет привода. (1/0,5/0,25 час)
- •Тема 2 Зубчатые передачи. (2/1/0,5 часа)
- •Тема 3 Червячные передачи. (2/1/0,5 часа)
- •Тема 4 Ременные передачи. (2/0,5/0,5 часа)
- •Тема 5 Цепные передачи. (2/0,5/0,5 часа)
- •Тема 6 Оси и валы. (2/0,5/0,5 часа)
- •Тема 7 Подшипники качения. (2/1/0,5 часа)
- •Тема 8 Шпоночные и шлицевые соединения. (1/0,5/0,5 часа)
- •Тема 9 Муфты механических приводов. (1/0,5/0,25 часа)
- •5 Тематический план самостоятельной работы студента с преподавателем
- •6 Материалы для контроля знаний студентов в период рубежного контроля и итоговой аттестации
- •6.1 Тематика письменных работ по дисциплине
- •6.2 Вопросы (тестовые задания) для самоконтроля
- •33 Способность детали сопротивляться разрушению или необратимому изменению формы, называется:
- •34 Способность детали сохранять первоначальную форму своей поверхности, сопротивляясь абразивному воздействию, называется:
- •35 Выберете верное определение понятия «надежности»:
- •125 Дайте характеристику подшипнику с номером 8310:
- •126 Дайте характеристику подшипнику с номером 6407:
- •127 Дайте характеристику подшипнику с номером 7508:
- •128 Дайте характеристику подшипнику с номером 1109:
Тема 13 Планетарные передачи (0,25/0,5/0,5 часа)
План лекции:
1. Общие сведения
2. Конструкции планетарных зубчатых передач
3. Достоинства планетарных зубчатых передач
Планетарными называют передачи, имеющие зубчатые колёса с перемещающимися осями. Эти подвижные колёса подобно планетам Солнечной системы вращаются вокруг своих осей и одновременно перемещаются вместе с осями, совершая плоское движение, называются они сателлитами (лат. satellitum – спутник). Подвижные колёса катятся по центральным колёсам (их иногда называют солнечными колёсами), имея с ними внешнее, а с корончатым колесом внутреннее зацепление. Оси сателлитов закреплены в водиле и вращаются вместе с ним вокруг центральной оси.
Рисунок 59 – Планетарная зубчатая передача
Планетарные передачи имеют ряд преимуществ перед обычными:
большие передаточные отношения при малых габаритах и массе;
возможность сложения или разложения механической мощности;
лёгкое управление и регулирование скорости;
малый шум вследствие замыкания сил в механизме.
В планетарных передачах широко применяют внутреннее зубчатое зацепление с углом w = 30о.
Для обеспечения сборки планетарных передач необходимо соблюдать условие соосности (совпадение геометрических центров колёс); условие сборки (сумма зубьев центральных колёс кратна числу сателлитов) и соседства (вершины зубьев сателлитов не соприкасаются друг с другом).
Зубчатые колёса планетарных передач рассчитываются по тем же законам, что и колёса обычных цилиндрических передач.
Тема14 Волновые передачи (0,25/0,5/0,5 часа)
План лекции:
1. Общие сведения
2. Конструкции волновых зубчатых передач
3. Достоинства и недостатки волновых зубчатых передач
Представляют собой цилиндрические передачи, где одно из колёс имеет гибкий венец. Этот гибкий венец деформируется генератором волн специальной некруглой формы (рисунок 60) и входит в зацепление с центральным колесом в двух зонах.
Рисунок 60 – Генератор волн
Идея волновых передач заключается в наличии нескольких пар зацепления, которые ещё и перемещаются по окружности, за счёт чего достигается огромное передаточное отношение (обычно U 60 300, известны конструкции с U > 1000). И это в одной ступени!
Рисунок 61 – Волновая зубчатая передача
Принцип работы волновой передачи аналогичен работе планетарной передачи с внутренним зацеплением и деформируемым сателлитом.
Такая передача была запатентована американским инженером Массером в 1959 г.
При необходимости такие передачи позволяют передавать движение в герметичное пространство без применения уплотняющих сальников, что особенно ценно для авиационной, космической и подводной техники, а также для машин химической промышленности.
К достоинствам волновых передач можно отнести:
+ меньшие массу и габариты;
+ большую кинематическую точность;
+ меньший мёртвый ход;
+ высокую вибропрочность за счёт демпфирования (рассеяния энергии) колебаний;
+ создают меньший шум.
К недостаткам волновых передач относятся:
– ограниченные обороты ведущего вала (во избежание больших центробежных сил инерции некруглого генератора волн);
– мелкие модули зубьев (1,5 – 2 мм);
– практически индивидуальное, дорогостоящее, весьма трудоёмкое изготовление гибкого колеса и генератора.
Основные виды поломок волновых передач:
– разрушение подшипника генератора волн от нагрузки в зацеплении;
– проскакивание генератора волн при больших вращающих моментах, когда зубья на входе в зацепление упираются друг в друга вершинами;
– поломка гибкого колеса от трещин усталости (особенно при U < 80);
– износ зубьев на концах;
– пластические деформации боковых поверхностей зубьев при перегрузках.
Расчёт волновых зубчатых передач отличается от расчёта обычных зубчатых передач тем, что учитывается деформация гибкого венца и генератора.
За критерий работоспособности обычно принимают допускаемые напряжения смятия:
)
,
где d – коэффициент ширины гибкого венца;
d – делительный диаметр гибкого венца.