Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зачет генетика с ответами.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
104.63 Кб
Скачать

9. Понятие о пенетрантности и экспрессивности

Ген, имеющийся в генотипе в необходимом для проявления количестве (1 аллель для доминантных признаков и 2 аллеля для рецессивных) может проявляться в виде признака в разной степени у разных организмов (экспрессивность) или вообще не проявляться (пенетрантность). Причины:

  • модификационная изменчивость (воздействие условий окружающей среды)

  • комбинативная изменчивость (воздействие других генов генотипа).

Экспрессивность – степень фенотипического проявления аллеля. Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, – изменчивую экспрессивность. Рецессивная мутация, уменьшающая число фасеток глаза у дрозофилы, у разных особей по разному уменьшает число фасеток вплоть до полного их отсутствия.

Пенетрантность – вероятность фенотипического проявления признака при наличии соответствующего гена. Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только  1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.

10. Виды скрещивания.

А) Моногибридное скрещивание — скрещивание форм, отличающихся друг от друга по одной паре изучаемых альтернативных признаков, за которые отвечают аллели одного гена.

Моногенное наследование, изучаемое при моногибридном скрещивании — это наследование признака, за проявления которого отвечает один ген, различные формы которого называют аллелями. Например, при моногибридном скрещивании между двумя чистыми линиями растений, гомозиготных по соответствующим признакам — одного с жёлтыми семенами (доминантный признак), а другого с зелёными семенами (рецессивный признак), можно ожидать, что первое поколение будет только с жёлтыми семенами, потому что аллель жёлтых семян доминирует над аллелью зелёных.

Б) Дигибридное скрещивание - скрещивание организмов, различающихся по двум парам альтернативных признаков, например, окраске цветков (белая или окрашенная) и форме семян (гладкая или морщинистая).

Если в дигибридном скрещивании разные пары аллельных генов находятся в разных парах гомологичных хромосом, то пары признаков наследуются независимо друг от друга (закон независимого наследования признаков).-3-ий закон Г. Менделя

В) Полигибридное скрещивание – это скрещивание особей, различающихся по нескольким парам альтернативных признаков и, соответственно, по нескольким парам аллельных генов.

Проще говоря:

Моногибридное –анализируется один признак;

Дигибридное – анализируется два признака.

Полигибридное –анализируется много признаков

11. Структура днк и рнк. Модель днк Уотсона и Крика.

Структура ДНК

В живых клетках содержится два типа нуклеиновых кислот - дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Как ДНК, так и РНК несут в себе нуклеотиды, состоящие из трех компонентов: азотистого основания, углевода, остатка фосфорной кислоты. Однако комбинация этих компонентов в ДНК и РНК несколько различны. Фосфорная кислота в молекулах ДНК и РНК одинакова. Углевод же имеется в двух вариантах: у нуклеотидов ДНК - дезоксирибоза, а у нуклеотидов РНК - рибоза. И рибоза, и дезоксирибоза - пятичленные, пятиуглеродистые соединения - пентозы. У дезоксирибозы, в отличие от рибозы, лишь на один атом кислорода меньше, что и определяет ее название, так как дезоксирибоза в переводе с латинского означает лишенная кислорода рибоза. Строгая локализация дезоксирибозы в ДНК, а рибозы в РНК, как раз и определяет название этих двух видов нуклеиновых кислот.  Третий компонент нуклеотидов ДНК и РНК - азотистые соединения, то есть вещества, содержащие азот и обладающие щелочными свойствами. В нуклеиновые кислоты входят две группы азотистых оснований. Одни из них относятся к группе пиримидинов, основу строения которых составляет шестичленное кольцо, а другие к группе пуринов, у которых к пиримидинову кольцу присоединено еще и пятичленное кольцо.  В состав молекул ДНК и РНК входят два разных пурина и два разных пиримидина. В ДНК имеются пурины - аденин, гуанин и пиримидины - цитозин, тимин. В молекулах РНК те же самые пурины, но из пиримидинов - цитозин и вместо тимина - урацил. В зависимости от содержания того или иного азотистого основания нуклеотиды называются адениловыми, тимиловыми, цитозиловыми, урациловыми, гуаниловыми.  Как же соединяются между собой нуклеотиды в длинные полинуклеотидные цепи? Оказывается, что такое соединение осуществляется путем установления связи между остатком молекулы фосфорной кислоты одного нуклеотида и углеводом другого. Образуется сахаро-фосфорный скелет молекулы полинуклеотида, к которому сбоку один за другим присоединяются азотистые основания.  Если учесть, что в каждой нуклеиновой кислоте по четыре вида азотистых оснований, то можно представить себе множество способов расположения их в цепи, подобно тому, как можно в самой разной последовательности нанизать на нитку бусинки четырех цветов - красные, белые, желтые. Зеленые. Последовательность расположения нуклеотидов в цепях молекул нуклеиновых кислот так же, как и аминокислот в молекулах белков, строго специфична для клеток разных организмов, то есть носит видовой характер. 

Между ДНК и РНК есть три основных отличия:

  1. ДНК содержит сахар дезоксирибозу, РНК — рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой, гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.

  2. Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил — неметилированная форма тимина.

  3. ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.

Структурный анализ биологически активных молекул РНК, включая тРНК, рРНК, мяРНК и другие молекулы, которые не кодируют белков, показал, что они состоят не из одной длинной спирали, а из многочисленных коротких спиралей, расположенных близко друг к другу и образующих нечто, похожее на третичную структуру белка. В результате этого РНК может катализировать химические реакции, например, пептидил-трансферазный центр рибосомы, участвующий в образовании пептидной связи белков, полностью состоит из РНК[23][24].

Трехмерная модель пространственного строения двухцепочечной ДНК была описана в 1953 г. Дж. Уотсоном и Френсисом Криком. Согласно этой модели молекула ДНК состоит из двух полинуклеотидных цепей, которые образуют правую спираль (винтовую линию) относительно одной и той же оси. Направление цепей взаимно противоположное. Структура ДНК – полимер, структурной единицей которого является нуклеотид. Нуклеотид состоит из: азотистого основания: пуринового – аденин (А) или гуанин (Г) или пиримидинового – цитозин (Ц) или тимин (Т); углевода дезоксирибозы (пятиуглеродное сахарное кольцо); остатка фосфорной кислоты (НРО3*).

Двойная спираль ДНК правосторонняя. 10 пар оснований составляют полный оборот 360о, следовательно, каждая пара оснований повернута на 36 о вокруг спирали относительно следующей пары. Сахарофосфатный остов располагается по периферии двойной спирали, а азотистые основания находятся внутри и их плоскости перпендикулярны оси спирали (рис. 2). Между основаниями образуются специфические водородные связи, в результате чего осуществляетсяся так называемое уотсон–криковское спаривание. Аденин всегда образует водородные связи с тимином, а гуанин с цитозином.

Такая закономерность называется комплементарностью. Комплементарность это определенная последовательностей оснований в противоположных цепях ДНК. Данная закономерность очень важна для репликации (удвоения) ДНК.