
- •М.А. Кречетова статистикА:практикум
- •Введение
- •Раздел 1
- •Понятие, особенности и предмет статистики
- •1.2 Основные понятия и методология статистики
- •Понятие статистического наблюдения, планирование наблюдения
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •2.1 Статистическая сводка
- •2.2 Статистическая группировка.
- •2.3 Принципы построения статистических группировок
- •1. Выбор группировочного признака
- •2. Определение числа групп.
- •2.4 Ряды распределения признаков
- •Типовые примеры Пример 1.
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •3.1 Статистические таблицы
- •Виды таблиц
- •Правила построения таблиц
- •3.2 Статистические графики
- •Классификация графиков
- •2. Статистические карты:
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •3.10 Какой вид имеет таблица из теста 3.9 по сказуемому?
- •Понятие статистического показателя, их классификация.
- •Классификация статистических показателей
- •4.2 Абсолютные статистические показатели
- •Относительные показатели
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самопроверки
- •4.1 Абсолютные показатели измеряются в:
- •5.1 Понятие средней величины, логическая формула средней
- •5.2 Виды средних величин
- •1. Степенные средние
- •Перечисленные средние объединяются в общей формуле
- •2. Структурные средние.
- •5.3 Средняя арифметическая, ее свойства.
- •Свойства средней арифметической.
- •Метод моментов расчета средней величины
- •5.4 Средняя гармоническая. Другие виды средних величин
- •5.5 Структурные средние
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •6.1 Понятие вариации, ее виды, показатели вариации
- •Свойства σ 2 и σ, формулы их расчета, вариация альтернативного признака
- •6.3 Виды дисперсий. Правило сложения дисперсий
- •6.4 Изучение концентрации распределения признака
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самопроверки
- •7.1 Понятие выборочного метода, его преимущества
- •Единицы, которые отбираются для обследования, называются выборкой, а вся совокупность – генеральной совокупностью.
- •7.2 Принципы выборочного метода, ошибки выборки.
- •7.3 Виды, методы и способы отбора единиц в выборку
- •7.4 Расчет средней ошибки выборки для различных способов отбора
- •7.5 Предельная ошибка выборки, распространение результатов выборки
- •7.7 Определение необходимой численности выборки
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самопроверки
- •8.1 Понятие ряда динамики, классификация, основное правило построения
- •8.2 Показатели анализа рядов динамики
- •8.3 Структура ряда динамики. Методы выявления основной тенденции
- •1 Укрупнение интервалов.
- •2 Метод скользящих средних
- •3 Аналитическое выравнивание
- •8.4 Построение тренда методом наименьших квадратов. Оценка качества модели. Прогнозирование
- •8.5 Статистическое изучение сезонности
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •9.1 Понятие индексов. Классификация индексов.
- •Классификация индексов
- •9.2 Общие индексы
- •Индекс цен
- •Индекс физического объема.
- •Индекс товарооборота.
- •Индекс затрат.
- •9.3 Средние индексы
- •9.4 Индексы средних качественных показателей.
- •Индекс структуры.
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •10.2 Требования к выполнению семестровой работы. Общие требования
- •Из № 1 Группировка и ее виды, ряды распределения
- •Из № 3. Показатели вариации. Выборочный метод
- •Из № 4. Ряды динамики
- •Из № 5 экономические индексы
- •Статистика. Учебник/ Под ред. И.И. Елисеевой (рекомендован мо рф для специальностей финансово-экономического профиля) – м.: инфра–м, 2006, 2010.– 568 с.
- •Курс социально-экономической статистики: Учебник (Рекомендован мо рф для экономических специальностей) /Под ред. В.В. Назарова – м.: инфра-м, 2006. –723 с.
- •Практические пособия
- •Ресурсы Интернет
Свойства σ 2 и σ, формулы их расчета, вариация альтернативного признака
Свойства:
Дисперсия и СКО σ 2 и σ – постоянной величины = 0.
Если все значения признака (xi) уменьшить или увеличить на число а, то дисперсия и СКО σ 2 и σ не изменятся.
3) Если все значения признака (xi) умножить или разделить на число k, то σ 2 изменится в k 2 раз, а σ – в k раз.
На основе этих свойств строится упрощенная формула расчета дисперсии и СКО.
(44)
(45)
Для нормального закона распределения для показателей вариации существует взаимосвязь.
R ≈ 6 · σ
σ = 1,25· l
На основе СКО можно оценить асимметрию распределения по ряду распределения. Для этого применяется коэффициент асимметрии, который можно найти по формуле
(46)
Kas находится в интервале от -3 до 3. Чем ближе к 0, тем асимметрия слабее, чем ближе по модулю к 3, тем сильнее. Если Kas > 0, то асимметрия правосторонняя, если Kas < 0, то левосторонняя.
Альтернативным в статистике считают атрибутивный признак, который может иметь только два значения. Если этот признак у единицы совокупности есть, то он равен 1, если нет, то он равен 0.
Определяется доля единиц, имеющих признак во всей совокупности: p = m/n, где m-это количество единиц, имеющих признак; n-это количество всех единиц.
q = 1– p - это доля единиц, у которых нет признака. Тогда распределение единиц совокупности по альтернативному признаку будет иметь вид:
xi |
1 |
0 |
fi |
p |
q |
Дисперсия и СКО альтернативного признака находятся по формулам
(47)
6.3 Виды дисперсий. Правило сложения дисперсий
Вариация признаков в совокупности складывается под влиянием различных внешних и внутренних причин и факторов. Влияние некоторых из этих факторов можно изучить, проведя аналитическую группировку совокупности по этому фактору. По проведенной группировке рассчитываются различные виды дисперсий:
1) Общая дисперсия – характеризует всю вариацию, складывающуюся под влиянием всех факторов.
(48)
2) Межгрупповая дисперсия – характеризует вариацию, складывающуюся под влиянием только группировочного признака.
(49)
где
– общая средняя для
всей совокупности;
–
групповые средние;
fi – количество единиц в группах.
3)Внутригрупповая дисперсия – характеризует вариацию, складывающуюся под влиянием всех других факторов, кроме группировочного. Их будет столько, сколько групп в проведенной группировке.
(50)
Средняя из внутригрупповых дисперсий равна:
(51)
Правило сложения дисперсий
(52)
Общая дисперсия равна сумме межгрупповой и средней из внутригрупповых дисперсий.
Сравнение различных видов дисперсий позволяет изучить влияние группировочного фактора на вариацию изучаемого показателя. Для этого применяют эмпирический коэффициент детерминации (ŋ2).
ŋ2 = ∂2 / σ 2 · 100% (53)
Чем больше доля межгрупповой дисперсии в общей, тем сильнее влияние группировочного фактора на общую вариацию.
Для изучения тесноты взаимосвязи между группировочным фактором и результативным признаком, рассчитанным по группам ( в результате аналитической группировки), применяется эмпирическое корреляционное отношение (ŋ)
(54)
Для того, чтобы сделать вывод по значению ŋ о тесноте взаимосвязи используются соотношения Чеддока (таблица 40).
Таблица 40
Соотношения Чеддока
ŋ |
Теснота связи |
0-0,3 |
нет связи |
0,3-0,5 |
слабая |
0,5-0,7 |
умеренная |
0,7-0,9 |
тесная |
0,9-1,0 |
очень тесная |
1 |
функциональная |