- •М.А. Кречетова статистикА:практикум
- •Введение
- •Раздел 1
- •Понятие, особенности и предмет статистики
- •1.2 Основные понятия и методология статистики
- •Понятие статистического наблюдения, планирование наблюдения
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •2.1 Статистическая сводка
- •2.2 Статистическая группировка.
- •2.3 Принципы построения статистических группировок
- •1. Выбор группировочного признака
- •2. Определение числа групп.
- •2.4 Ряды распределения признаков
- •Типовые примеры Пример 1.
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •3.1 Статистические таблицы
- •Виды таблиц
- •Правила построения таблиц
- •3.2 Статистические графики
- •Классификация графиков
- •2. Статистические карты:
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •3.10 Какой вид имеет таблица из теста 3.9 по сказуемому?
- •Понятие статистического показателя, их классификация.
- •Классификация статистических показателей
- •4.2 Абсолютные статистические показатели
- •Относительные показатели
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самопроверки
- •4.1 Абсолютные показатели измеряются в:
- •5.1 Понятие средней величины, логическая формула средней
- •5.2 Виды средних величин
- •1. Степенные средние
- •Перечисленные средние объединяются в общей формуле
- •2. Структурные средние.
- •5.3 Средняя арифметическая, ее свойства.
- •Свойства средней арифметической.
- •Метод моментов расчета средней величины
- •5.4 Средняя гармоническая. Другие виды средних величин
- •5.5 Структурные средние
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •6.1 Понятие вариации, ее виды, показатели вариации
- •Свойства σ 2 и σ, формулы их расчета, вариация альтернативного признака
- •6.3 Виды дисперсий. Правило сложения дисперсий
- •6.4 Изучение концентрации распределения признака
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самопроверки
- •7.1 Понятие выборочного метода, его преимущества
- •Единицы, которые отбираются для обследования, называются выборкой, а вся совокупность – генеральной совокупностью.
- •7.2 Принципы выборочного метода, ошибки выборки.
- •7.3 Виды, методы и способы отбора единиц в выборку
- •7.4 Расчет средней ошибки выборки для различных способов отбора
- •7.5 Предельная ошибка выборки, распространение результатов выборки
- •7.7 Определение необходимой численности выборки
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самопроверки
- •8.1 Понятие ряда динамики, классификация, основное правило построения
- •8.2 Показатели анализа рядов динамики
- •8.3 Структура ряда динамики. Методы выявления основной тенденции
- •1 Укрупнение интервалов.
- •2 Метод скользящих средних
- •3 Аналитическое выравнивание
- •8.4 Построение тренда методом наименьших квадратов. Оценка качества модели. Прогнозирование
- •8.5 Статистическое изучение сезонности
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •9.1 Понятие индексов. Классификация индексов.
- •Классификация индексов
- •9.2 Общие индексы
- •Индекс цен
- •Индекс физического объема.
- •Индекс товарооборота.
- •Индекс затрат.
- •9.3 Средние индексы
- •9.4 Индексы средних качественных показателей.
- •Индекс структуры.
- •Типовые примеры
- •Задачи и упражнения для самостоятельной работы
- •Тесты для самоконтроля
- •10.2 Требования к выполнению семестровой работы. Общие требования
- •Из № 1 Группировка и ее виды, ряды распределения
- •Из № 3. Показатели вариации. Выборочный метод
- •Из № 4. Ряды динамики
- •Из № 5 экономические индексы
- •Статистика. Учебник/ Под ред. И.И. Елисеевой (рекомендован мо рф для специальностей финансово-экономического профиля) – м.: инфра–м, 2006, 2010.– 568 с.
- •Курс социально-экономической статистики: Учебник (Рекомендован мо рф для экономических специальностей) /Под ред. В.В. Назарова – м.: инфра-м, 2006. –723 с.
- •Практические пособия
- •Ресурсы Интернет
5.4 Средняя гармоническая. Другие виды средних величин
Средняя гармоническая (взвешенная) применяется в тех случаях, когда известен числитель логической формулы средней и неизвестен знаменатель. Знаменатель можно найти как частное двух показателей.
(28)
где wi = xi*fi. Если wi одинаково у всех единиц совокупности, то для расчета средней применяется средняя гармоническая простая.
(29)
Средняя квадратическая применяется для определения средней по показателям, имеющим квадратные единицы измерения, а также для расчета показателей вариации. Расчетная формула имеет вид:
(30)
Средняя геометрическая применяется для определения средних темпов роста в рядах динамики.
(31)
Средние хронологические применяются для определения среднего уровня признака за период времени, если исходные данные представлены значениями этого признака на конкретные даты. При этом, если расстояния между датами равные применяется средняя хронологическая простая.
(32)
Если расстояния между датами различны, применяется средняя хронологическая взвешенная.
(33)
где
– среднее значение признака между
соседними датами,
ti – расстояние между соседними датами.
5.5 Структурные средние
Структурные средние применяются для характеристики рядов распределения. К ним относятся мода и медиана.
Мода (Мо) – это наиболее часто встречающееся значение признака в совокупности, т.е. значение, имеющее наибольшую частоту.
Медиана (Ме) – это середина ряда распределения, т.е. значение признака, делящее рад распределения пополам по количеству единиц совокупности. Половина единиц совокупности имеют значения признака меньше медианы, вторая половина больше медианы.
Для нахождения моды по дискретному ряду распределения нужно выбрать значение, имеющее наибольшую частоту. Моды могут быть одна или две.
Для нахождения медианы по дискретному ряду распределения необходимо определить накопленные частоты и найти номер середины ряда. Далее выбирается то значение признака, где превышается половина единиц совокупности, т.е. значение из той группы единиц, в которой находится середина ряда распределения.
По интервальным рядам мода определяется по формуле.
(34)
где Xмо – нижний конец модального интервала (с наибольшей частотой);
k – ширина интервала;
fМо, fМо-1, fМо+1 – частоты в модальном интервале, до него и после него.
Медиана определяется по формуле
(35)
где XМе – нижний конец медианного интервала (где превышена половина единиц совокупности по накопленным частотам);
k – ширина интервала;
fМе – частота в медианном интервале;
fМе-1Накоп – накопленная частота до медианного интервала.
Моду
и медиану можно также определить
графически. Мода определяется по полигону
(рис. 3) или гистограмме (рис.4) распределения.
В первом случае мода соответствует
наибольшей ординате. Во втором – правую
вершину модального прямоугольника
соединяют с правым углом предыдущего
прямоугольника, а левую вершину – с
левым углом последующего прямоугольника.
Абсцисса точки пересечения – этих
прямых будет модой распределения.
Медиана определяется по кумуляте (рис.
5). Для ее определения высоту наибольшей
ординаты, которая соответствует общей
численности совокупности, делят пополам.
Через полученную точку проводят прямую,
параллельную оси абсцисс, до пересечения
ее с кумулятой. Абсцисса точки пересечения
является медианой.
Рис. 3-5 Графическое представление моды и медианы
Соотношение средней, моды и медианы между собой позволяет сделать вывод об асимметрии распределения признака в совокупности.
1. Распределение симметрично, если
2. Распределение имеет правостороннюю асимметрию, если
3. Распределение имеет левостороннюю асимметрию, если
