
- •Глава 1 основные сведения о системах электроснабжения
- •1.1. Общие сведения
- •1.2. Электрические параметры электроэнергетических систем
- •1.3. Напряжения электрических сетей
- •1.4. Управление электроэнергетическими системами
- •1.5. Структура потребителей и понятие о графиках их электрических нагрузок
- •1.6. Преимущества объединения электроэнергетических систем
- •Глава 2.Конструктивное выполнение электрических сетей
- •2.1. Общие сведения
- •2.2.Воздушные линии Общие сведения
- •Провода воздушных линий
- •2.3. Кабельные линии Конструкции кабелей
- •2.4. Конструктивное выполнение цеховых сетей напряжением до 1 кВ Общие сведения
- •Электропроводки
- •Глава 3. Основное электрооборудование электрических подстанций
- •Общие сведения о силовых трансформаторах
- •Общие сведения об автотрансформаторах
- •Коммутационная аппаратура напряжением выше 1 кВ Выключатели напряжением выше 1 кВ
- •Плавкие предохранители напряжением выше 1 кВ
- •Разъединители, отделители и короткозамыкатели напряжением выше 1 кВ
- •Коммутационные аппараты напряжением до 1 кВ Предохранители напряжением до 1 кВ
- •Автоматические выключатели
- •Контакторы и магнитные пускатели
- •Глава 4 . Схемы электрических соединений в системе электроснабжения
- •5.1. Общие сведения
- •4.2. Выбор номинальных напряжений
- •4.3. Источники питания и пункты приема электроэнергии объектов на напряжении выше 1 кВ Источники питания и требования к надежности электроснабжения
- •Схемы подключения источников питания
- •Типы электроподстанций
- •4.4. Схемы цеховых электрических сетей напряжением до 1 кВ
- •4.5. Схемы осветительных сетей
- •Глава 5. Конструктивное выполнение
- •5.2. Комплектные распределительные устройства напряжением до 1 кВ
- •5.3. Комплектные распределительные устройства напряжением выше 1 кВ
- •5.4. Внутренние распределительные устройства
- •5.5. Комплектные трансформаторные подстанции Назначение и классификация
- •5.6. Конструктивное исполнение комплектных трансформаторных подстанций
- •Глава 6. Характеристики графиков нагрузки элементов систем электроснабжения
- •6.1. Графики электрических нагрузок Индивидуальные графики нагрузок
- •6.2. Групповые графики электрических нагрузок
- •6.3. Показатели графиков электрических нагрузок
- •Коэффициент использования
- •Коэффициент включения
- •Коэффициент загрузки
- •Коэффициент заполнения графика
- •Коэффициент одновременности максимумов нагрузки
- •Глава 7. Расчетные электрические нагрузки промышленных электрических сетей
- •7.1. Нагрузочная способность электрооборудования
- •Общие сведения
- •Нагрев проводов и кабелей
- •7.2. Понятие расчетной электрической нагрузки
- •7.3. Расчет электрических нагрузок по коэффициенту расчетной активной мощности
- •7.4. Расчет нагрузки электрического освещения
- •7.5. Расчет нагрузки электроприемников напряжением выше 1 кВ
- •7.5. Расчет электрической нагрузки предприятия
- •Глава 8. Определение расхода и потерь электроэнергии
- •8.1. Определение расхода активной электроэнергии
- •Объекта электроснабжения
- •8.2. Потери активной электроэнергии на передачу в электрических сетях
- •8.3. Потери активной электроэнергии в трансформаторах
- •Глава 9. Параметры электрических сетей и их нормальных режимов
- •9.1. Электрические параметры сети
- •9.2. Характеристика симметричных синусоидальных рабочих режимов
- •9.3. Параметры элементов электрических сетей системы электроснабжения промышленных предприятий
- •9.4. Общие понятия о расчете разомкнутой распределительной сети
- •Глава 10. Компенсация реактивных мощностей в системе электроснабжения
- •10.1. Параметры режимов электрических систем
- •10.2. Баланс активных мощностей
- •10.3. Баланс реактивных мощностей
- •10.4. Исходные положения по компенсации реактивной мощности в системах электроснабжения промышленных предприятий
- •10.5. Основные потребители реактивной мощности на промышленных предприятиях
- •10.6. Источники реактивной мощности (компенсирующие устройства)
- •Синхронные двигатели как источник реактивной мощности
- •Силовые конденсаторы
- •10.7.Регулирование мощности компенсирующих устройств
- •10.8. Батареи конденсаторов в сетях с резкопеременной и вентильной нагрузкой
- •Глава 11. Выбор аппаратов и проводников системы электроснабжения объектов напряжением выше 1 кВ
- •11.1. Общие сведения
- •11.2. Выбор и проверка выключателей напряжением 1 ...220 кВ
- •11.3. Выбор и проверка предохранителей напряжением выше 1 кВ
- •11.4. Выбор и проверка реакторов
- •11.5. Выбор шин и изоляторов
- •11.6. Выбор и проверка трансформаторов тока
- •11.7. Выбор трансформаторов напряжения
- •Глава 12. Выбор проводников напряжением выше 1 кВ
- •12.1. Общие сведения
- •12.2. Выбор сечений жил кабелей напряжением выше 1 кВ
- •12.3. Допустимые нагрузки на неизолированные провода
- •12.4. Выбор сечений жил неизолированных проводов воздушных линий напряжением выше 1 кВ
- •Глава 13 . Выбор силовых трансформаторов
- •13.1. Общие сведения
- •13.2. Допустимые перегрузки трансформаторов по предельной температуре
- •13.3. Выбор трансформаторов главной понижающей подстанции
- •13.4.Принципы выбора единичной мощности
- •Определение мощности конденсаторов напряжением до и выше 1 кВ
- •13.5. Выбор варианта числа цеховых трансформаторов
- •13.6. Определение числа трансформаторов в каждом цехе
- •Глава 14. Выбор электрооборудования на напряжение до 1 кВ
- •14.1. Выбор автоматических выключателей
- •14.2. Выбор шинопроводов
- •14.3. Выбор предохранителей напряжением до 1 кВ
- •14.4. Выбор сечений проводов и кабелей напряжением до 1 кВ с учетом выбора защиты
- •Глава 15 . Качество электроэнергии в системах электроснабжения объектов
- •15.1. Общие сведения
- •Отклонение напряжения
- •Колебания напряжения
- •Несинусоидальность напряжения
- •Несимметрия напряжения
- •Провал напряжения
- •Импульсное напряжение
- •Временное перенапряжение
- •15.3. Влияние качества электроэнергии на работу электроприемников. Влияние отклонения частоты в энергосистеме на работу электроприемников
- •Статические характеристики асинхронных двигателей
- •Влияние колебаний напряжения на работу электроприемников
- •Влияние несимметрии напряжения на работу электроприемников
- •Влияние несинусоидальности напряжения на работу электроприемников
- •15.4. Регулирование показателей качества напряжения в системах электроснабжения объектов
- •Выбор схем электроснабжения для улучшения качества электроэнергии
- •Список литературы
Глава 1 основные сведения о системах электроснабжения
1.1. Общие сведения
В настоящее время нельзя представить себе жизнь и деятельность современного человека без применения электричества. Электричество уже давно и прочно вошло во все отрасли народного хозяйства и в быт людей. Основное достоинство электрической энергии - относительная простота производства, передачи, дробления и преобразования.
В системе электроснабжения объектов можно выделить три вида электроустановок:
по производству электроэнергии - электрические станции;
по передаче, преобразованию и распределению электроэнергии - электрические сети и подстанции;
по потреблению электроэнергии в производственных и бытовых нуждах приемники электроэнергии.
Электрической станцией называется предприятие, на котором вырабатывается электрическая энергия. На этих станциях различные виды энергии (энергия топлива, падающей воды, ветра, атомная и др.) с помощью электрических машин, называемых генераторами, преобразуются в электрическую энергию.
В зависимости от используемого вида первичной энергии все существующие электрические станции разделяются на следующие основные группы: тепловые, гидравлические, атомные, ветряные и др.
Приемником электроэнергии (электроприемником, токоприемником) называется электрическая часть производственной установки, получающая электроэнергию от источника и преобразующая ее в механическую, тепловую, химическую, световую энергию, в энергию электромагнитного поля.
По технологическому назначению приемники электроэнергии классифицируются в зависимости от вида энергии, в который данный приемник преобразует электрическую энергию: электродвигатели приводов машин и механизмов; электротермические установки; электрохимические установки; установки электроосвещения; установки электростатического и электромагнитного поля, электрофильтры; устройства искровой обработки, устройства контроля и испытания изделий. Электроприемники характеризуются номинальными параметрами: напряжением, током, мощностью и др.
Совокупность электроприемников производственных установок цеха, корпуса, предприятия, присоединенных с помощью электрических сетей к общему пункту электропитания, называется электропотребителем.
Совокупность электрических станций, линий электропередачи, подстанций, тепловых сетей и приемников, объединенных общим и непрерывным процессом выработки, преобразования, распределения тепловой и электрической энергии, называется энергетической системой.
Единая энергетическая система (ЕЭС) объединяет энергетические системы отдельных районов, соединяя их линиями электропередачи (ЛЭП).
Часть энергетической системы, состоящая из генераторов, распределительных устройств, подстанций, линий электрической сети и приемников электроэнергии, называют электроэнергетической системой.
Электрической сетью называется совокупность электроустановок для передачи и распределения электроэнергии, состоящая из подстанций и распределительных устройств, соединенных линиями электропередачи, и работающая на определенной территории.
Электрическая сеть объекта электроснабжения, называемая системой электроснабжения объекта, является продолжением электрической системы. Система электроснабжения объекта объединяет понижающие и преобразовательные подстанции, распределительные пункты, электроприемники и ЛЭП.
Прием, преобразование и распределение электроэнергии происходят на подстанции - электроустановке, состоящей из трансформаторов или иных преобразователей электроэнергии, распределительных устройств, устройств управления, защиты, измерения и вспомогательных устройств.
Распределение поступающей электроэнергии без ее преобразования или трансформации выполняется на распределительных подстанциях (РП).
Электрические сети подразделяют по следующим признакам.
1. Напряжение сети. Сети могут быть напряжением до 1 кВ - низковольтными, или низкого напряжения (НН), и выше 1 кВ - высоковольтными, или высокого напряжения (ВН).
2. Род тока. Сети могут быть постоянного и переменного тока. Электрические сети выполняются в основном по системе трехфазного переменного тока, что является наиболее целесообразным, поскольку при этом может производиться трансформация электроэнергии. При большом числе однофазных приемников от трехфазных сетей осуществляются однофазные ответвления. Принятая частота переменного тока в ЕЭС России равна 50 Гц.
3. Назначение. По характеру потребителей и от назначения территории, на которой они находятся, различают: сети в городах, сети промышленных предприятий, сети электрического транспорта, сети в сельской местности. Кроме того, имеются районные сети, предназначенные для соединения крупных электрических станций и подстанций на напряжении выше 35 кВ; крупные электроэнергетические системы на напряжении 330, 500 и 750 кВ. Кроме того, применяют понятия: питающие и распределительные сети.
4. Конструктивное выполнение сетей. Линии могут быть воздушными, кабельными и токопроводами. Подстанции могут быть открытыми и закрытыми.
Для графического изображения электроэнергетических систем, а также отдельных элементов и связи между элементами используют общепринятые условные обозначения. На рис. 1.1 показаны условные обозначения основных элементов электроэнергетической системы.
Примерная схема относительно простой электроэнергетической системы приведена на рис. 1.2. Здесь электрическая энергия, вырабатываемая на двух электростанциях различных типов: тепловой электростанции (ТЭС) и теплоэлектроцентрали (ТЭЦ), - подводится к потребителям, удаленным друг от друга. Для того, чтобы передать электроэнергию на расстояние, ее предварительно преобразовывают, повышая напряжение трансформаторами. У мест потребления электроэнергии напряжение понижают до нужной величины. Схема, приведенная на рис. 1.2, представлена в однолинейном изображении. В действительности элементы системы, работающие на переменном токе, имеют трехфазное исполнение. Однако для выявления структуры системы и анализа ее работы нет необходимости в ее трехфазном изображении, вполне достаточно воспользоваться ее однолинейным изображением.