
- •1 Өлшеу құралдарының анықтамасы мен классификациясы 4
- •3 Сынаулар нәтижелерін өңдеу 13
- •11 Аналогтық тіркеуші аспаптар 108
- •15 Өлшеуіш ақпаратты кодтау 149
- •15.1 Жалпы мәліметтер 149
- •2 Өлшеу құралдарының негізгі сипаттамалары
- •2.1 Өлшеу қателіктері
- •Мұндығы х – өлшеу кезінде алынған мән;
- •Мұндығы х – өлшеу кезінде алынған мән;
- •2.1 Сурет – Абсолютті қателіктің кіріс шамасынан тәуелділігінің графигі.
- •2.2 Көрсетулердің вариациясы.
- •2.3 Сезімталдық
- •Берілген анықтама кіріс сигналдың шығыс шамаға түрленуін бейнелейді.
- •2.4 Тұтынылатын қуат және өқ-ның басқа сипаттамалары
- •3.1 Ықтималдық теориясы бойынша кездейсоқ қателік
- •3.2 Сурет – Нормалды таралу заңының кездейсоқ қателігінің графигі.
- •3.3 Сурет.
- •3.4 Сурет – Бірқалыпты таралу заңы.
- •3.5 Сурет – Трапециялық таралу заңы.
- •3.6 Сурет – Екімодальдық таралу заңы.
- •3.2 Сынау нәтижелерін өңдеу
- •4.1 Жалпы мәліметтер
- •4.2 Өлшеулер классификациясы
- •4.1 Сурет
- •4.3 Электрлік шамаларды өлшеммен салыстыру әдісімен өлшеу.
- •5 Электрлік шамаларды аналогтық аспаптармен өлшеу
- •5.1 Жалпы мәліметтер
- •5.2 Магнитоэлектрлік өлшеуіш механизмдер
- •5.2 Сурет
- •5.3 Сурет
- •5.4 Сурет
- •5.5 Сурет - Шунттың миллиамперметр тізбегіне жалғану схемасы.
- •5.3 Электромагниттік өлшеуіш механизмдер.
- •5.8 Сурет - Электромагниттік частотомердің схемасы.
- •5.4 Электродинамикалық өлшеуіш механизмдер
- •5.5 Ферродинамикалық өлшеуіш механизмдер.
- •5.15 Сурет - Электродинамикалық логометрлік өм частотомері.
- •5.16 Сурет – Логометрлік электродинамикалық механизмді фазометр.
- •5.6 Электростатикалық өлшеуіш механизмдер
- •5.18 Сурет – Электростатикалық өлшеуіш механизмді аспаптың схемасы.
- •6 Айнымалы тоқтың үш фазалық тізбегіндегі активті және реактивті қуатты өлшеу
- •7 Айнымалы тоқты түрлендіруші магнитоэлектірлік жүйе аспаптарымен айнымалы тоқтар мен кернеулерді өлшеу
- •7.1 Түзеткіш жүйенің амперметрлері және вольтметрлері
- •7.1 Сурет - Біржартыпериодты түзеткіш пен өлшеу аспабының схемасы
- •7.2 Сурет – Түзеткіш жүйедегі аспаптарды өлшеу механизмінің негізгі қосу схемасы.
- •7.3 Сурет – Түзеткіш жүйе вольтметрінің схемасы.
- •7.2 Термоэлектрлік жүйенің амперметрлері мен вольтметрлері
- •7 .4 Сурет - термоэлектрлік жүйе аспабының құрылымдық схемасы
- •7.5 Сурет – Термотүрлендіргіштер түрлері.
- •5.6 Сурет – Термобатарея
- •7 .7 Сурет- амперметр схемасы.
- •7.8 Сурет – вольтметр схемасы.
- •8 Электрондық аналогтық аспаптар
- •8.2 Электрондық вольтметрлер
- •8.1 Сурет - Тұрақты тоқ вольтметрінің қарапайым сұлбасы.
- •8.2 Сурет – Сезімталдығы жоғары тұрақты тоқ вольтметрі
- •8.3 Сурет – м – дм күшейткіші бар тұрақты тоқ вольтметрінің сигналдар уақытының диаграммалары.
- •8.4 Сурет – Айнымалы тоқ вольтметрінің құрылымдық схемалары
- •8.5 Сурет – Кірісі ашық амплитудалық шама түрлендіргішінің схемасы және оның уақыттық диаграммалары.
- •8.6 Сурет – Кірісі жабық амплитудалық шама түрлендіргішінің схемасы және уақыттық диаграммалары.
- •8.7 Сурет – Бірқалыпты шкаласы бар әсер етуші шама вольтметр.
- •8.8 Сурет – Диодты-компенсациялық вольтметрдің схемасы.
- •8 .9 Сурет - Әмбебап вольтметрдің құрылымдық схемасы
- •8.10 Сурет импульстік вольтметрдің құрылымдық схемасы.
- •8.11 Сурет – Амплитудалық түрлендіргіштің компенсациялық схемасы.
- •8.3 Жиілікті және фазаны өлшеуге арналған аспаптармен түрлендіргіштер.
- •8.13 Сурет – Кернеу-жиілік түрлендіргішінің құрылымдық схемасы.
- •8.14 Сурет – Жиілікті кернеуді түрлендіретін резонанстық түрлендіргіштің функционалдық схемасы.
- •8.15 Сурет – Фазаны кернеуге түрлендіретін түрлендіргіштің құрылымдық схемасы.
- •8.16 Сурет – Тура қайта көбейтумен параметрлік кқ-ның құрылымдық сұлбасы.
- •8.17 Сурет – Параметрлік жанама кқ-ның құрылымдық сұлбасы.
- •8.18 Сурет - шим-аим базасындағы түрлендіргіштің құрылымдық сұлбасы.
- •8.19 Сурет – Активті қуатты өлшейтін электронды есептеуіштің құрылымдық сұлбасы
- •8.5 Электрондық омметрлер
- •8.7 Электронды-сәулелік осциллографтар
- •Тікбұрышты-координатты компенсатор жұмыс істеуші тоқтардың бір- біріне қатысты фазалық ауытқуларының бұрышы 90- қа тең. 8.4- суретте осындай компенсатордың суреті көрсетілген
- •10.3 Автоматтық компенсаторлар
- •12 Цифрлық өлшеуіш аспаптар
- •13.1 Жалпы мәліметтер
- •13.3 Суреті – Холл түрлендіргішімен теслометрдің құрылымдық схемасы.
- •14 Өлшеуіш ақпараттың берілісі
- •14.1Сурет - тональды модуляция кезіндегі амплитудалық – модулирленген сигнал
- •14.2. Сурет – бір жарты периодты демодулятор схемасы.
- •14.4 Сурет - Жиілікті демодулятор схемасы.
- •14.5 Сурет – Фзалық демодулятор схемасы
- •14.3 Импульсты модуляция.
- •14.7 Сурет – Импульсты модуляцияның уақыт диаграммалары.
- •14.8Сурет – Денгей бойынша бірқалыпты кванттау түрлері.
- •14.9 Сурет – Уақыт бойынша бірқалыпты дискретизация.
- •15.1 Жалпы мәліметтер
- •15.2 Екілік кодтар
- •15.3 Екілік-ондық кодтар
- •15.1 Сурет – Хемминг кубы
5.3 Электромагниттік өлшеуіш механизмдер.
Электромагниттік өлшеуіш механизмдердің жұмысы орамасы бойынша өлшеуіш ток ағып өтетін бір немесе бірнеше ферромагниттік өзектері бар оське бекмделген қозғалыссыз катушкамен тудырылған магниттік өрістің өзара әсеріне негізделген. Көбінесе жалпақ катушкалы, дөңгелек катушкалы және тұйық магнитожетекті өлшеуіш механизмдердің конструкциялары кең таралған. 5.6 және 5.7 суреттерде жалпақ катушкалы электромагниттік механизм мен оның структуралық схемасы көрсетілген.
Өзек катушкасы бойынша тоқ өткен кезде ол магниттеледі және катушка саңылауына сорылуы.
Бұл жағдайда айналушы момент:
;
мұндағы WЭМ– өзекті катушка тогының электромагниттік энергиясы
L – өзек жағдайына тәуелді катушка индуктивтілігі.
Тұрақты тоқта:
Айналдырушы моменттің орташа мәні айнымалы синусоидалық токта мынаған тең болады:
;
мұндағы
– токтың
әсер етуші мәні
Өлшеуіш механизміне қозғалмалы бөлігінің ауытқу бұрышы келесі теңдіктен анықталады:
,
мынаған тең болады:
.
Осыған орай қозғалмалы бөліктің ауытқу бұрышының тоқтан тәуелділігі сызықты емес және тұрақты тоқта да, айнымалы тоқта да қозғалмалы бөліктің бұрылысы бірдей, егер токтың әсер етуші мәні тұрақты тоқ мәніне тең болғанда.
Берілген
аспаптың шкаласы басында сығылған, ал
соңында созылған.
ауытқу бұрышының ауытқудың жұмысшы
диапазонының маңызды бөлігі үшін тогынан
сызықтың тәуелділігін арнайы функциялы
өзекті дайындау арқылы алады, бұндағы
қатынасы
қажетті
функциясы болып табылады.
ауытқу бұрышы квадрат тогының функциясы болып табылғандықтан бұрылу бұрышының таңбасы катушкадағы тоқ болуынан тәуелді емес. Сондықтан электромагниттік аспаптар тұрақты және айнымалы токтарды өлшеу үшін керекті.
Қозғалмалы бөлік орын ауыстыруының бағытының сигнал полярлығынан тәуелділігін қамтамасыз ету үшін өлшеуіш механизмнің магниттік тізбегіне тұрақты магниттер енгізіледі. Бұндай электромагниттік механизм поляризацияланған деп аталады. 3.7 суретте бұндай механизмнің құрылымдық схемасы көрсетілген.
Электромагниттік механизмдердің логометрлерінде екі катушка және екі өзек болады(5.4-суретті қара). Өзектер бір осьте бекітіледі. Бір катушка арқылы ағатын I1, тогы М1 моментін, ал екінші катушка арқылы ағатын I2 тогы М1-ге қарсы бағытталған М2 моментін тудырады. Токтарды өткізуде қозғалмалы рамка М1 моменті М2-ге тең болғанға дейін бұралады, яғни
немесе
;
мұндағы L1 және L2 – өзектер жағдайынан тәуелді бірінші және екінші катушкалардың индуктивтігі.
Бұдан қозғалмалы рамканың қозғалмалы рамканың бұралу бұрышы токтар қатынасының функциясы болып табылады:
.
Электромагниттік механизмдердің жетістіктері:
- конструкция қарапайымдылығы;
- арзандығы;
- жұмыстағы сенімділігі;
- үлкен жүктемелерге төзу қабілеті;
- тұрақты және айнымалы токтар тізбегінде жұмыс істеуі.
Кемшіліктері:
- төмен дәлділік;
- төмен сезімталдылық;
- маңызды қуат тұтынушылығы;
- шкаланың бірқалыпсыздығы;
- магниттік өрістер мен температура ықпалына шалдыққыштығы.
Электромагниттік өлшеуіш механизмді амперметрлер мен вольтметрлер. Электромагниттік амперметрлерде өлшеуіш механизмнің катушкасы тікелей өлшенуші ток тізбегіне жалғанады.
Амперметр шкаласы (25 100%) шегінде бірқалыпты, бұл өзек формасын таңдаумен жүзеге асырылады.
0,2 және 0,1 дәлдік класты амперметрлер үшін кері әсер етуші моментті тудыратын серіппе серпімділігінің өзгеруіне шартталған температуралық қателік маңызды болып табылады.
Тұрақты токты амперметрмен өлшеуде өзекті магниттенудің гистерезисінен қателік пайда болады, ол өлшенуші токты үлкейту немесе кішірейту кезіндегі бірдей емес көрсетулерден айқындалады.
Вольтметр керекті өлшеу диапазонын қамтамасыз ету үшін арналған тізбектей жалғанған қосымша кедергілі электромагниттік өлшеуіш механизм болып табылады.
Вольтметрлер кіші өлшеу диапазонында температуралық, ал тұрақты ток тізбектерінде өлшеуде гистерезистік қателікке ие.
Қосымша кедергіні енгізудің әсерінен жиіліктік қателік амперметрлерге қарағанда вольтметрлерде жоғары. 1,0 ; 1,5 ; 2,5 класты қалқандық аспаптар кең таралымға ие. 1500 Гц жиіліктегі 5 мА ден 10 А дейінгі өлшеу диапазонды тасымалдамалы амперметрлер, сондай-ақ 300 А дейінгі ток трансформаторлары қыстырылған және 15 кА дейінгі ток трансформаторлары сыртта орнықтырылған токтардың қалқандық аспаптары шығарылады.
Тасымалдамалы вольтметрлер 600 Гц-ке дейінгі жиіліктер үшін 1,5 ден 600 В дейінгі өлшеу шектерімен, сондай-ақ 0,5 тен 600 В дейінгі қалқандық аспаптар шығарылады.
Частотомерлер. Частотомерлердің жұмыс істеу принципі логометрлік өлшеуіш механизмнің қолданылуына негізделген.
Электромагниттік частотомердің схемасы 5.8-суретте келтірілген..
Жиіліктің өзнеруінде I1 және I2 токтары әртүрлі өзгереді, өйткені бұл токтар тізбектерінің кедергілерінің сипаты әрқилы. Частотомер тар жиілік диапазондарына шығарылады: 45 – 55 Гц, 450 – 550 Гц, дәлдік кластары1,5 және 2,5.