Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Способы кодирования информации.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
77.82 Кб
Скачать

Способы кодирования информации.

Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. 

Двоичное кодирование – один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.

Цифры представляются электрическими сигналами, с которыми работает компьютер. Для удобства различения в компьютере используются сигналы двух уровней. Один из них соответствует цифре 1, другой — цифре 0. Цифры 0 и 1 называются двоичными. Они являются символами, из которых состоит язык, понимаемый и используемый компьютером. Информация, с которой работает компьютер, «кодируется» с помощью этого языка. Таким образом, любая информация в компьютере представляется с помощью двоичных цифр. Наименьшим количеством информации является одно из двух возможных значений — 0 или 1. Такое количество информации называется бит (bit сокр. от англ. binary digit — двоичная цифра). Равновероятными являются события, появление которых одинаково возможно. Например, при бросании монеты возможность выпадения «цифры» или «герба» одинакова. Для однозначного определения одного из двух событий — «цифра» или «герб» — достаточно одного бита информации: 0 — «цифра», 1 — «герб» (или наоборот).

Бит является наименьшей единицей измерения количества информации в компьютере. Теперь следует научиться представлять любое число в виде комбинации нулей и единиц. Это представление должно быть однозначным, т.е. различным числам должны соответствовать разные комбинации.

Системы счисления, используемые в эвм

От того, какая система счисления будет использована в ЭВМ, зависят скорость вычислений, емкость памяти, сложность алгоритмов выполнения арифметических операций.

Дело в том, что для физического представления (изображения) чисел необходимы элементы, способные находиться в одном из нескольких устойчивых состояний. Число этих состояний должно быть равно основанию принятой системы счисления. Тогда каждое состояние будет представлять соответствующую цифру из алфавита данной системы счисления.

Десятичная система счисления, привычная для нас, не является наилучшей для использования в ЭВМ. Для изображения любого числа в десятичной системе счисления требуется десять различных символов. При реализации в ЭВМ этой системы счисления необходимы функциональные элементы, имеющие ровно десять устойчивых состояний. Так, в арифмометрах используются вращающиеся шестеренки, в которых фиксируется десять устойчивых положений. Но арифмометр и другие подобные механические устройства имеют серьезный недостаток- низкое быстродействие.

Создание электронных элементов, имеющих много устойчивых состояний, затруднено. Наиболее простыми с точки зрения технической реализации являются так называемые двухпозиционные элементы, способные находиться в одном из двух устойчивых состояний, например: --электромагнитные реле замкнуто или разомкнуто; --ферромагнитная поверхность намагничена или размагничена; --магнитный сердечник намагничен в одном направлении или в противоположном; --транзисторный ключ находится в проводящем состоянии или запертом и т.д.

Одно из этих устойчивых состояний может представляться с цифрой 0, другое- цифрой 1. С двоичной системой связаны и другие существенные преимущества. Она обеспечивает максимальную устойчивость в процессе передачи информации как между отдельными узлами автоматического устройства, так и на большие расстояния. В ней предельно просто выполняются арифметические действия и возможно применения аппарата булевой алгебры для выполнения логических преобразований.

Благодаря таким особенностям двоичная система стала стандартом при построении ЭВМ.

Большое применение в ЭВМ нашли также восьмеричная и шестнадцатеричная системы счисления. Обмен информацией между устройствами большинства ЭВМ осуществляется путем передачи двоичных чисел. Пользоваться такими числами из-за их большой длины и зрительной однородности человеку не удобно. Поэтому специалисты(программисты, инженеры) как на этапах составления программ для ЭВМ, их отладки, ручного ввода/вывода данных, так и на этапах разработки, создания, настройки вычислительных систем заменяют коды машинных команд, адреса и операнды на эквивалентные им величины в восьмеричной или шестнадцатеричной системах счисления. В результате длина исходного слова сокращается в три, четыре раза соответственно. Это делает информацию более удобной для рассмотрения и анализа. Таким образом, восьмеричная и шестнадцатеричная системы счисления выступают в качестве простейшего языка обшения человека с ЭВМ, достаточно близкого как к превычной для человека десятичной системе счисления, так и к двоичному"языку" машины.

Как правило, пользователь ЭВМ вводит исходную информацию и получает результат решения задачи в десятичной системе счисления.

При вводе информации в ЭВМ каждая десятичная цифра заменяется ее двоичным эквивалентном в виде тетрады (четыре двоичных разряда). Десятичное число требует для своего изображения стольких тетрад, сколько имеется десятичных разрядов в числе. Таким образом, десятичные цифры представляются в двоичной системе счисления, а все разряды без изменения -- в десятичной системе счисления. Это позволяет выполнять арифметические операции в десятичной системе счисления, используя двоичные элементы для хранения и переработки числовой информации. Такая форма представления данных называется двоично-десятичной. Говорят о двоично-десятичном коде (ДДК) или смешанной двоично-десятичной системе счисления.

Перед матиматиками и конструкторами в 50-х гг. встала проблема отыскания таких систем счисления, которые отвечали бы требованиям как разработчиков ЭВМ, так и создателей программного обеспечения. Одним из итогов этих исследований стало значительное изменение представлений о системах счисления и о методах вычислений. Оказалось, что арифметический счет, которым человечество пользуется с древнейших времен, может совершенствоваться, подчас весьма неожиданно и на удивление эффективно.

Специалисты выделили так называемую "машинную" группу систем счисления и разработали способы преобразования чисел этой группы. К "машинной" группе систем счисления относятся: -- двоичная;  -- восьмеричная; -- шестнадцатеричная.

Официальное рождение двоичной арифметики связано с именем Г.В.Лейбница, опубликовавшего в 1703 г. статью, в которой он рассмотрел правила выполнения арифметических действий над двоичными числами.

Из истории известен курьезный случай с восьмеричной системой счисления. Шведский король Карл XII в 1717 г. увлекался восьмеричной системой счисления, считал ее более удобной, чем десятичная, и намеревался королевским приказом ввести ее как общепринятую. Неожиданная смерть помешала королю осуществить столь необычное намерение.