
- •В г. Октябрьском контрольная работа по курсу: «Термодинамика и теплопередача» Вариант 99
- •Введение
- •1 Составление теплового баланса прямоточного котла передвижной парогенераторной установки
- •1.1 Исходные данные:
- •1.2 Определяем располагаемую теплоту топлива
- •1.3 Теплота полезно используемая в котлоагрегате
- •1.4 Потери теплоты q2 (%) с уходящими газами
- •1.5 Потери теплоты q3 от химической неполноты сгорания топлива
- •1.6 Потери теплоты q4 от механической неполноты сгорания топлива
- •1.7 Потери теплоты q5в окружающую среду
- •1.Горючие вэр.
- •2.Тепловые вэр.
- •3.Вэр избыточного давления.
- •2 Расчет тепловых потерь наземного паропровода
- •2.1 Исходные данные
- •2.2 Допустимые тепловые потери при наличии изоляции
- •2.3 Потери тепла с одного погонного метра трубопровода
- •2.4 Расчет изоляции
- •3 Расчет тепловых потерь в стволе скважини при закачке горячего теплоносителя
- •3.1 Исходные данные
- •3.2 Схема оборудования для нагнетания пара
- •3.3 Изменение температуры теплоносителя на участке скважины (200-600)м
- •3.4 Изменение температурного поля в радиальном направлении
- •Заключение
- •Список использованной литературы
2.Тепловые вэр.
К тепловым ВЭР относится физическая теплота отходящих газов котельных установок и промышленных печей, основной или промежуточной продукции, других отходов основного производства, а также теплота рабочих тел, пара и горячей воды, отработавших в технологических и энергетических агрегатах. Для утилизации тепловых ВЭР используют теплообменники, котлы-утилизаторы или тепловые агенты. Рекуперация теплоты отработанных технологических потоков в теплообменниках может проходить через разделяющую их поверхность или при непосредственном контакте. Тепловые ВЭР могут поступать в виде концентрированных потоков теплоты или в виде теплоты, рассеиваемой в окружающую среду. В промышленности концентрированные потоки составляют 41 %, а рассеиваемая теплота — 59 %. Концентрированные потоки включают теплоту уходящих дымовых газов печей и котлов, сточных вод технологических установок и жилищно-коммунального сектора. Тепловые ВЭР делятся на высокотемпературные (с температурой носителя выше 500 °С), среднетемпературные (при температурах от 150 до 500 °С) и низкотемпературные (при температурах ниже 150 °С). При использовании установок, систем, аппаратов небольшой мощности потоки теплоты, отводимые от них, составляют небольшую величину и рассредоточены в пространстве, что затрудняет их утилизацию из-за низкой рентабельности.
3.Вэр избыточного давления.
ВЭР избыточного давления могут быть использованы для производства механической работы, теплоты или холода. В первом случае для преобразования используется турбина, сопряженная на одном валу с электрическим генератором. Во втором случае энергия избыточного давления может быть также преобразована в теплоту или холод в соответствии с эффектом Ранка.
Рассмотрим использование ВЭР избыточного давления в системах распределения природного газа. В магистральных трубопроводах газ транспортируется под давлением 4,5-6,5 МПа. Затем на газораспределительных станциях (ГРС) давление снижается до 1,2 МПа. У конечных потребителей на газоредуцирующих пунктах (ГРП) давление уменьшается до более низких значений, соответствующих технологическим требованиям. В обоих случаях снижение давления происходит без совершения работы, т.е. имеют место непроизводительные потери энергии. Эту энергию можно использовать для производства электричества, установив газотурбинную расширительную станцию (ГТРС), а ГРП использовать как резервную систему. Схема ГТРС, которая может быть использована в системах газоснабжения ТЭЦ, дана на рис. 4.8. Для предотвращения выпадения конденсата на лопатках турбины газ перед подачей в турбину подогревается.
Рис.3. Утилизация энергии избыточного давления в системе распределения природного газа
2 Расчет тепловых потерь наземного паропровода
Для подачи пара имеется паропровод диаметром Dнар/Dвн и длиной L. Начальная температура пара t1 при давлении Р1. Требуется рассчитать δиз изоляции так, чтобы у потребителя температура пара была не ниже t2 при Р2, если температура окружающей среды τ0, скорость протекания пара w.