
- •2 Негізгі таратылатын материалдар мазмұны
- •2.1 Курстың тақырыптық жоспары
- •1Бөлім Механика
- •1 Кинематика
- •Материялық нүкте қозғалысының кинематикалық сипаттамалары
- •1.2 Траектория, жол ұзындығы, орын ауыстыру векторы
- •1.3 Жылдамдық
- •1.4 Үдеу және оның құраушылары
- •1.5 Қатты дененің ілгерілмелі қозғалысы
- •1.6 Айналмалы қозғалыс кинематикасы
- •Қатты дененің ілгерілмелі қозғалысының және материялық нүктенің динамикасы
- •2.1 Ньютонның бірінші заңы – инерция заңы
- •2.2 Күш. Масса
- •2.3 Ньютонның екінші заңы– материялық нүкте динамикасының негізгі заңы
- •2.4 Ньютонның үшінші заңы
- •2.5 Қатты дененің ілгерілмелі қозғалыс динамикасының негізгі заңы
- •2.6 Импульстің сақталу заңы
- •2.7 Механикалық жүйенің массалар центрі және оның қозғалыс заңдары
- •2.8 Механикадағы күш түрлері
- •2.9 Энергия, күш жұмысы, қуат
- •2.10 Денелер жүйесінің механикалық энергиясы
- •2.11 Механикалық энергияның сақталу заңы
- •3 Қатты дененің айналмалы қозғалыс динамикасы
- •3.1 Күш моменті
- •3.2 Дененің инерция моменті
- •4.1 Айналмалы қозғалыстағы дененің жұмысы және кинетикалық энергиясы
- •4.2 Қатты дененің айналмалы қозғалыс динамикасының негізгі теңдеуі
- •4.3 Импульс моменті және оның сақталу заңы
- •4.3 Импульс моментінің сақталу заңын дәлелдеу
- •Арнайы салыстырмалы теорияның элементтері
- •Релятивистік динамика элементтері
- •5 Тұтас орта механикасының элементтері
- •5.1 Ағынның үздіксіздік теңдеуі
- •5.2 Бернулли теңдеуі
- •5.2.1 Сұйықтықтың горизонталь ағуы
- •5.2.2 Сұйықтықтың тесіктен ағуы
- •5.3 Тұтқырлық
- •5.4 Сұйық ағынының екі түрі
- •Тербелістер мен толқындар
- •6.1 Механикалық гармониялық тербелістер және олардың сипаттамалары
- •6.2 Гармониялық тербелістегі материялық нүкте энергиясы
- •6.3 Гармониялық осцилляторлар
- •6.3 Өшетін тербелістер
- •6.4 Еріксіз тербелістер
- •6.5 Механикалық гармониялық толқындар
- •6.6 Жазық қума толқынның теңдеуі
- •6.7 Тұрғын толқындар
- •II бөлім . Молекулалық физика және термодинамика
- •7 Термодинамикалық жүйелер мен олардың параметрлері
- •7.1 Термодинамикалық параметрлер мен процестер
- •7.2 Идеал газдың күй теңдеуі
- •7.3 Идеал газдардың молекула-кинетикалық теориясы
- •7.4 Газ молекулаларының ілгерілемелі қозғалысының орташа кинетикалық энергиясы
- •7.5 Статистикалық таралу
- •7.5.1 Энергияның еркіндік дәрежелер бойынша бірқалыпты таралу заңы
- •7.5.2 Сыртқы күш өрісіндегі бөлшектер үшін Больцман таралуы
- •7.5.3 Газ молекулаларының жылдамдықтар бойынша таралу заңы (Максвелл заңы)
- •7.6 Термодинамикалық тепе-теңдіксіз жүйелердегі тасымалдау құбылыстары
- •7.6.1 Диффузия
- •7.6.2 Ішкі кедергі
- •Термодинамикның бірінші бастамасы
- •8.1 Жүйенің ішкі энергиясы
- •8.2 Жұмыс және жылу
- •8 Термодинамиканың бірінші заңы
- •8.4 Термодинамикалық процестер мен жұмыстың графиктері
- •8.5 Заттың жылусыйымдылығы
- •8.6 Термодинамиканың бірінші бастамасын идеал газдардағы изопроцестерге қолдану
- •8.6.1 Изохоралық процесс ( )
- •8.6.2 Изобаралық процесс ( )
- •8.6.3 Изотермиялық процесс ( )
- •8.6.4 Адиабаталық процесс ( )
- •8.6.5 Политроптық процесс ( )
- •Термодинамиканың екінші бастамасы
- •9.1 Қайтымды және қайтымсыз процестер
- •9.2 Дөңгелек процестер
- •9.3 Карноның идеал жылулық машинасы
- •9.4 Карно теоремасы
- •9.5 Клаузиус теңсіздігі
- •9.6 Энтропия
- •9.6.1 Энтропияның қасиеттері
- •9.7 Термодинамиканың екінші бастамасы
- •Нақты газдар мен булар
- •10.1 Молекула көлемін ескеру
- •10.2 Молекулалардың тартылыс күшін ескеру
- •10.4 Заттың критикалық күйі. Фазалық ауысулар
- •– Газдың универсал тұрақтысы. Сонымен, Ван-дер-Ваальс теңдеуі газ күйін, газдың сұйықтыққа айналу процесін және сұйықтықтың сығылуын сипаттай алады.
- •10.5 Нақты газдың ішкі энергиясы
- •III бөлім. Электр өрісі
- •Кулон заңы
- •Электрстатикалық өріс кернеулігі
- •Гаусс теоремасы
- •Электрстатикалық өрістердің қасиеттері
- •Электр өрісіндегі өткізгіштер
- •Электрлік сыйымдылық. Оқшауланған өткізгіштің электрлік сыйымдылығы
- •Өзара сыйымдылық. Конденсаторлар.
- •Электрстатикалық өрістегі диэлектриктер. Диэлектриктердің түрлері.
- •Диэлектриктердің поляризациясы. Поляризациялану.
- •Поляризациялық зарядтар
- •Электрлік ығысу векторы
- •Электр зарядтарының энергиясы
- •Зарядталған конденсатордың энергиясы
- •Өзара әсерлесуші зарядтардың энергиясы
- •Зарядталған өткізгіштің энергиясы
- •Ток күші және ток тығыздығы
- •Тармақталған тізбектерге арналған Кирхгоф ережелері
- •Газдардың электрөткізгіштігі
1.2 Траектория, жол ұзындығы, орын ауыстыру векторы
Берілген санақ жүйесінде қозғалыстағы дененің немесе материялық нүктенің басып өткен нүктелерінің жиының траектория деп атайды. Траекторияның пішініне байланысты қозғалыс түзу сызықты және қисық сызықты болып бөлінеді. Материялық нүктенің АВ қисық сызықты траекториясы бойымен өткен қозғалысын қарастырайық (1.2-сур.). Қисық сызықты АВ геометриялық нүктелер жиыны ∆S жол ұзындығы деп аталады. Бұл скаляр шама уақытқа тәуелді функция болады:
.
1.2-сурет. Материялық нүкте қозғалысы |
Нүктенің
бастапқы А
күйінен соңғы В
күйіне
жүргізілген
|
.
(1.2)
1.3 Жылдамдық
Жылдамдық
–
нүктенің берілген уақыт мезетінде
қозғалыс бағыты мен жол өзгерісін
өзгерісін анықтайтын векторлық шама.
Жылдамдықтың сан мәні бірлік уақыт
ішінде жолдың өзгерісіне тең:
(1.1) орташа жылдамдық.
Нүктенің
орташа
жылдамдық векторы
орын ауыстыру радиус-векторының
уақыт өзгерісіне қатынасымен анықталады:
(1.3)
Лездік
жылдамдық
–
қозғалыстағы нүктенің уақыт бойынша
алыңған
радиус-векторының бірінші туындысына
тең векторлық шама:
.
(1.4)
Жылдамдық векторының бағыты кез келген нүктеде траекториясына жүргізілген жанама бағытымен анықталады. Жылдамдық модулі мынадай өрнекпен анықталады:
(1.5)
Бұл өрнектен жол ұзындығын анықтауға
болады:
(1.6)
Бірқалыпты
қозғалыс
кезінде (
)
жолдың теңдеуі мына түрде жазылады:
.
(1.7)
1.4 Үдеу және оның құраушылары
Үдеу – материялық нүкте жылдамдығының модуль және бағыт бойынша өзгеруін сипаттайтын векторлық шама.
Орташа
үдеу векторы
берілген уақыт ішінде
жылдамдық өзгерісінің
уақытқа қатынасымен анықталады:
[а]
=м/с2
(1.8)
Лездік үдеу –уақыт бойынша жылдамдық векторының бірінші туындысына немесе радиус-векторының уақыт бойынша екінші туындысына тең векторлық шама:
(1.9)
Жоғарыдағы (1.5) теңдікті есепке ала отырып үдеу модулін анықтауға болады
(1.10)
Үдеу
тұрақты кездегі (
)
қозғалыс бірқалыпты
айнымалы
деп аталады. Егер: а) бірқалыпты үдемелі,
егер
,
б)
бірқалыпты кемімелі немесе бірқалыпты
баяу қозғалыс, егер
.
Бірқалыпты айнымалы қозғалыс үшін жолдың және жылдамдықтың өрнектері мына түрде жазылады:
,
(1.11)
.
(1.12)
Бірқалыпты
түзу сызықты үдемелі қозғалыс кезінде
векторының бағыты
векторының бағытымен сәйкес келеді, ал
кемімелі қозғалыс кезінде оған
қарама-қарсы болады.
Қисық
сызықты қозғалыс кезінде (1.3-сур.)
|
1.3-сурет. Қисықсызықты қозғалыс |
|
1.4-сурет.Үдеудің екі құраушысы |
Тангенциал
үдеу жылдамдықтың
модулінің өзгеруін
сипаттайды
|
Радиусы
шеңбер бойымен бірқалыпты айналу
кезіндегі нормаль удеу модулі келесі
формуламен анықталады
(1.14)
Нүктенің толық үдеуінің модулі мынаған тең:
(1.15)
Әр түрлі ілгерілемелі қозғалыс кезіндегі үдеу құраушыларының мәндері 1.1-кестеде келтірілген.
1.1-кесте
Қозғалыс |
Тангенциал үдеу
|
Нормаль үдеу
|
Бірқалыпты түзу сызықты |
|
|
Бірқалыпты айнымалы түзу сызықты |
|
|
Бірқалыпты айналмалы |
|
|
Бірқалыпты айнымалы қисықсызықты |
|
|