
- •2 Негізгі таратылатын материалдар мазмұны
- •2.1 Курстың тақырыптық жоспары
- •1Бөлім Механика
- •1 Кинематика
- •Материялық нүкте қозғалысының кинематикалық сипаттамалары
- •1.2 Траектория, жол ұзындығы, орын ауыстыру векторы
- •1.3 Жылдамдық
- •1.4 Үдеу және оның құраушылары
- •1.5 Қатты дененің ілгерілмелі қозғалысы
- •1.6 Айналмалы қозғалыс кинематикасы
- •Қатты дененің ілгерілмелі қозғалысының және материялық нүктенің динамикасы
- •2.1 Ньютонның бірінші заңы – инерция заңы
- •2.2 Күш. Масса
- •2.3 Ньютонның екінші заңы– материялық нүкте динамикасының негізгі заңы
- •2.4 Ньютонның үшінші заңы
- •2.5 Қатты дененің ілгерілмелі қозғалыс динамикасының негізгі заңы
- •2.6 Импульстің сақталу заңы
- •2.7 Механикалық жүйенің массалар центрі және оның қозғалыс заңдары
- •2.8 Механикадағы күш түрлері
- •2.9 Энергия, күш жұмысы, қуат
- •2.10 Денелер жүйесінің механикалық энергиясы
- •2.11 Механикалық энергияның сақталу заңы
- •3 Қатты дененің айналмалы қозғалыс динамикасы
- •3.1 Күш моменті
- •3.2 Дененің инерция моменті
- •4.1 Айналмалы қозғалыстағы дененің жұмысы және кинетикалық энергиясы
- •4.2 Қатты дененің айналмалы қозғалыс динамикасының негізгі теңдеуі
- •4.3 Импульс моменті және оның сақталу заңы
- •4.3 Импульс моментінің сақталу заңын дәлелдеу
- •Арнайы салыстырмалы теорияның элементтері
- •Релятивистік динамика элементтері
- •5 Тұтас орта механикасының элементтері
- •5.1 Ағынның үздіксіздік теңдеуі
- •5.2 Бернулли теңдеуі
- •5.2.1 Сұйықтықтың горизонталь ағуы
- •5.2.2 Сұйықтықтың тесіктен ағуы
- •5.3 Тұтқырлық
- •5.4 Сұйық ағынының екі түрі
- •Тербелістер мен толқындар
- •6.1 Механикалық гармониялық тербелістер және олардың сипаттамалары
- •6.2 Гармониялық тербелістегі материялық нүкте энергиясы
- •6.3 Гармониялық осцилляторлар
- •6.3 Өшетін тербелістер
- •6.4 Еріксіз тербелістер
- •6.5 Механикалық гармониялық толқындар
- •6.6 Жазық қума толқынның теңдеуі
- •6.7 Тұрғын толқындар
- •II бөлім . Молекулалық физика және термодинамика
- •7 Термодинамикалық жүйелер мен олардың параметрлері
- •7.1 Термодинамикалық параметрлер мен процестер
- •7.2 Идеал газдың күй теңдеуі
- •7.3 Идеал газдардың молекула-кинетикалық теориясы
- •7.4 Газ молекулаларының ілгерілемелі қозғалысының орташа кинетикалық энергиясы
- •7.5 Статистикалық таралу
- •7.5.1 Энергияның еркіндік дәрежелер бойынша бірқалыпты таралу заңы
- •7.5.2 Сыртқы күш өрісіндегі бөлшектер үшін Больцман таралуы
- •7.5.3 Газ молекулаларының жылдамдықтар бойынша таралу заңы (Максвелл заңы)
- •7.6 Термодинамикалық тепе-теңдіксіз жүйелердегі тасымалдау құбылыстары
- •7.6.1 Диффузия
- •7.6.2 Ішкі кедергі
- •Термодинамикның бірінші бастамасы
- •8.1 Жүйенің ішкі энергиясы
- •8.2 Жұмыс және жылу
- •8 Термодинамиканың бірінші заңы
- •8.4 Термодинамикалық процестер мен жұмыстың графиктері
- •8.5 Заттың жылусыйымдылығы
- •8.6 Термодинамиканың бірінші бастамасын идеал газдардағы изопроцестерге қолдану
- •8.6.1 Изохоралық процесс ( )
- •8.6.2 Изобаралық процесс ( )
- •8.6.3 Изотермиялық процесс ( )
- •8.6.4 Адиабаталық процесс ( )
- •8.6.5 Политроптық процесс ( )
- •Термодинамиканың екінші бастамасы
- •9.1 Қайтымды және қайтымсыз процестер
- •9.2 Дөңгелек процестер
- •9.3 Карноның идеал жылулық машинасы
- •9.4 Карно теоремасы
- •9.5 Клаузиус теңсіздігі
- •9.6 Энтропия
- •9.6.1 Энтропияның қасиеттері
- •9.7 Термодинамиканың екінші бастамасы
- •Нақты газдар мен булар
- •10.1 Молекула көлемін ескеру
- •10.2 Молекулалардың тартылыс күшін ескеру
- •10.4 Заттың критикалық күйі. Фазалық ауысулар
- •– Газдың универсал тұрақтысы. Сонымен, Ван-дер-Ваальс теңдеуі газ күйін, газдың сұйықтыққа айналу процесін және сұйықтықтың сығылуын сипаттай алады.
- •10.5 Нақты газдың ішкі энергиясы
- •III бөлім. Электр өрісі
- •Кулон заңы
- •Электрстатикалық өріс кернеулігі
- •Гаусс теоремасы
- •Электрстатикалық өрістердің қасиеттері
- •Электр өрісіндегі өткізгіштер
- •Электрлік сыйымдылық. Оқшауланған өткізгіштің электрлік сыйымдылығы
- •Өзара сыйымдылық. Конденсаторлар.
- •Электрстатикалық өрістегі диэлектриктер. Диэлектриктердің түрлері.
- •Диэлектриктердің поляризациясы. Поляризациялану.
- •Поляризациялық зарядтар
- •Электрлік ығысу векторы
- •Электр зарядтарының энергиясы
- •Зарядталған конденсатордың энергиясы
- •Өзара әсерлесуші зарядтардың энергиясы
- •Зарядталған өткізгіштің энергиясы
- •Ток күші және ток тығыздығы
- •Тармақталған тізбектерге арналған Кирхгоф ережелері
- •Газдардың электрөткізгіштігі
4.2 Қатты дененің айналмалы қозғалыс динамикасының негізгі теңдеуі
Айналмалы
қозғалыста
күштің әсерінен дененің
бұрышына бұрылуы кезіндегі күш жұмысы
(4.1) оның кинетикалық
энергиясының (4.2) артуына әкеліп соғады:
,
немесе
.
немесе
(4.4)
Қатты
дененің айналмалы қозғалыс динамикасының
негізгі теңдеуі: айналушы
дененің бұрыштық үдеуі денелерге
түсірілген күш моменттерінің қосындысына
тура пропорционал, ал дененің айналу
осіне қатысты инерция моментіне кері
пропорционал. Келтірілген
(4.4) өрнектен көретініміз айналу осіне
қатысты дененің инерция моменті тұрақты
болса (
),
онда (
)
бұрыштық үдеу де тұрақты
.
Егер
=0,
онда
- дене бірқалыпты айналады.
4.3 Импульс моменті және оның сақталу заңы
Массасы
қатты дененің кішкентай бөлшегін
қарастырайық. Оның жылдамдығы
және оған қатысты импульсі
нүкте траекториясына жанама бойымен
бағытталған.
4.2-сурет. Импульс моментін анықтау |
Қозғалмайтын
О нүктесіне
қатысты
импульс
моменті векторы
Импульс
моменті векторы
|
Материялық
нүктенің
осіне қатысты импульс моменті векторы
осы
векторының
айналу
осіне
түсірілген проекциясы
арқылы анықталады.
Ол айналу осінде жатыр және оның модулі
мына теңдеу арқылы анықталады.
(4.7)
Қатты
дененің
осьіне қатысты
импульс моменті векторы барлық
нүктелерінің
векторларының қосындысына тең.
Барлық векторлар айналу
осінде жатыр және бірдей бағытталған.
Олардың модулі мынаған
тең.
(4.8)
(4.8) теңдігін векторлық түрде былай жазуға болады:
.
(4.9)
(4.9)
уақыт бойынша дифференциалдап (
)
(4.4) мына өрнекті аламыз:
.
(4.10)
Бұл
қатты дененің айналмалы қозғалыс
динамикасының негізгі заңының бір түрі:
ось
бойымен
қатты
дененің айналу кезіндегі импульс
моменті
уақыт бойынша туындысы сол денеге әсер
ететін сыртқы күштердің моментіне (
)
тең.
Соңғы теңдікті былай жазуға болады.
(4.11)
Айналушы дененің импульс моментінің өзгерісі оған әсер етуші сыртқы күштердің әсерінен болады.
Тұйық жүйеде сыртқы күштердің моменті нольге тең.
және
(4.12)
Бұл теңдік импульс моментінің сақталу заңын құрайды: қозғалмайтын оське қатысты дененің импульс моменті тұйық жүйеде тұрақты болып, уақыт бойынша өзгермейді.
Бұл тұжырым табиғаттың іргелі заңдарының бірі болып, кеңістіктің изотропты (барлық бағыттар тең құқықты) екендігінің салдары, яғни табиғатта оқшауланған бағыттың жоқ екендігін көрсетеді. Тұйық жүйенің бұрылуы оның механикалық қасиеттерін өзгерте алмайды.
,
онда тұйық жүйе үшін теңдік
(4.13)
Егер
дененің инерция моменті өзгермейтін
болса, онда дене тұрақты бұрыштық
жылдамдықпен қозғалыс жасайды (
),
(
).
Егер
шамасы өзгерсе, онда
шамасы да өзгереді. Егер
артса, онда
азаяды.
Импульс моментінің сақталу заңын Жуковскийдің тәжірибесінен көз жеткізуге болады (4.3-сурет).