
- •Лекция № 1 Тема: Предмет и задачи экологической токсикологии, ее место в системе наук об окружающей среде
- •История развития экологической токсикологии в России.
- •Лекция № 2 Тема: Понятие ксенобиотиков. Принципы классификации токсических соединений.
- •Лекция № 3 Тема: Общие вопросы токсикокинетики.
- •1. Поступление через дыхательные пути.
- •2. Всасывание из желудочно-кишечного тракта.
- •3. Проникновение через кожу.
- •1. Простая диффузия.
- •2. Фильтрация.
- •3. Пиноцитоз.
- •4. Активный транспорт.
- •5. Транспорт через гематоэнцефалический и плацентарный барьеры.
- •Лекция № 4 Тема: Общие вопросы токсикокинетики метаболизм и выведение ксенобиотиков.
- •Лекция № 5 Тема: Источники появления потенциальных токсических веществ в окружающей среде. Приоритетные загрязнители.
- •Лекция № 6 Тема: Поведение ксенобиотиков в окружающей среде.
- •Лекция № 7 Тема: Тяжелые металлы как основные токсиканты в экосистеме.
- •Лекция № 8 Тема: Органические токсиканты, их влияние на окружающую среду.
- •Воздействие соз на здоровье человека и состояние экосистем
- •Лекция № 9 Тема: Диоксины как наиболее опасные стойкие органические загрязнители.
- •Основные источники диоксинов и фуранов
- •Значения коэффициентов эквивалентной токсичности для диоксинов хдд и фуранов хдф (воз, 1997)
- •Лекция № 10 Тема: Полихлорированные бифенилы.
- •Лекция № 11 Тема: Полициклические ароматические углеводороды и летучие органические соединения.
- •Лекция № 12 Тема: Основная классификация пестицидов.
- •Нормативы содержания ддт и его метаболитов в экосистемах по рекомендациям органов здравоохранения и защиты окружающей среды сша и Канады
- •Лекция № 13 Тема: Принципы токсикологического нормирования.
- •Соотношение различных видов пдк в воздухе для некоторых веществ
- •Лекция № 14 Тема: Токсический эффект. Адаптация к воздействию.
- •Лекция № 15 Тема: Биоиндикация и биотестирование.
5. Транспорт через гематоэнцефалический и плацентарный барьеры.
Функции барьеров кровь /мозг и кровь/ спинномозговая жидкость осуществляется типичными липопротеиновыми мембранами, через которые легко проникают липоидорастворимые неэлектролиты со скоростью, пропорциональной коэффициенту распределения масло/вода. Диффузия через эти барьеры может протекать в двух направлениях. Катионы и анионы металлов медленно проникают через оба барьера. Многие металлы в начальный период остаются на более низком уровне в ткани мозга, нежели в крови и прочих тканях. Известно также, что обратная диффузия из ткани мозга происходит медленно; однако со временем может произойти перераспределение, и концентрация металла в головном мозге повысится.
Плацентарный барьер, как и гематоэнцефалический, имеет липопротеиновую структуру, являясь в то же время метаболизирующей тканью. Через плаценту путем простой диффузии хорошо проникают липоидорастворимые неэлектролиты с ограниченным молекулярным весом. Соединения с молекулярной массой более 1000 не проникают через этот барьер. Плохо и медленно проходят ионизированные неэлектролиты. Некоторые элементы (ртуть, селен, марганец) проникают через плаценту и обнаруживаются в тканях плода.
Законы распределения ксенобиотиков в организме имеют важное практическое значение в лечении острых и хронических отравлений, а также при оценке отдаленных последствий воздействия ядов на здоровье.
Литература:
Ревич Б.А., Аванский С.Л., Тихонова Г.И. Экологическая эпидемиология. М.: Издательский центр «Академия», 2004
Барышников И.И., Лойт А.О., Савченков М.Ф. Экологическая токсикология. Иркутск: Изд-во Иркут. ун-та, 1991
Дж. Уэр. Проблемы загрязнения окружающей среды и токсикологии. М.: Изд-во «Мир», 1993
Лекция № 4 Тема: Общие вопросы токсикокинетики метаболизм и выведение ксенобиотиков.
План лекции:
Распределение ксенобиотиков в организме.
Депонирование ксенобиотиков.
Особенности метаболизма ксенобиотиков.
Пути выведения ксенобиотиков.
Практическое значение изучения токсикокинетических процессов.
Распределение ядов в организме является динамичным процессом. Химические вещества по мере поступления в кровь и лимфу распределяются между жидкой частью этих сред, а также в межклеточной и внутриклеточной жидкостях. В крови часть химических веществ вступает в обратимую связь с альбуминами, а некоторые вещества — с глобулинами. Образовавшийся при этом комплекс не проникает через сосудистые и тканевые мембраны и поэтому не участвует в формировании токсического процесса; он служит динамичным резервом яда в организме.
Липоидорастворимые вещества накапливаются в жировых депо, нервной ткани, печени. Различные лекарственные вещества и яды обладают способностью избирательно накапливаться в отдельных органах (адреналин — преимущественно в сердце, йод — в щитовидной железе, трихлорэтилен — в мозге, хлороформ - в надпочечниках, тиофосфат — в слюнных железах, печени и почках и т. д.).
Неэлектролиты, метаболически относительно инертные и обладающие хорошей липоидорастворимостью, накапливаются во всех органах и тканях. При этом в первой фазе поступления яда в организм определяющим будет кровоснабжение органа, которое лимитирует достижение равновесия кровь/ткань (динамическое равновесие). Однако, в дальнейшем основным фактором, влияющим на распределение яда, станет сорбционная емкость органа (статическое равновесие). Для липоидорастворимых веществ наибольшей емкостью обладает жировая ткань и органы, богатые липидами (костный мозг, семенники). Для многих липоидорастворимых веществ жировая ткань является основным депо, удерживающим яд на более высоком уровне в течение длительного времени. При этом длительность сохранения ядов в жировом депо определяется их физико-химическими свойствами.
Для распределения металлов в организме, в отличие от органических неэлектролитов, не выявлено общих закономерностей, связывающих физико-химические свойства последних с их распределением. Однако, в общем металлы имеют тенденцию накопляться в тех же тканях, где они нормально содержатся как микроэлементы, равно как и в органах с интенсивным обменом веществ (печень, почки, эндокринные железы). Многие тяжелые металлы, достигая клетки, фиксируются часто на клеточной мембране, нарушая тем самым жизнедеятельность клетки. Металлы в виде растворимых и хорошо диссоциирующихся соединений, а также склонные к образованию прочных связей с кальцием и фосфором (свинец, бериллий, радий, торий и др.) - накапливаются преимущественно в костной ткани. В форме грубодисперсных коллоидов ряд металлов (некоторые труднорастворимые элементы) избирательно задерживается в таких органах, богатых ретикулоэндотелиалъными клетками, как печень, селезенка, костный мозг.
Для некоторых металлов характерно более равномерное распределение во всех органах. Это относится ко многим элементам, входящим в V—VIII группы периодической системы: хром, ванадий, марганец, кобальт, никель, мышьяк, селен.
Процесс превращения химических веществ в биологических средах (биотрансформация) начинается сразу же после их поступления в организм. Биотфансформация ведет к полной или частичной потере веществом токсических свойств, но может сопровождаться образованием соединений, которые по токсическому действию превосходят своих предшественников (так называемый «летальный синтез»). В конечном счете, вещества, образовавшиеся в ходе реакции «летального синтеза», также могут трансформироваться в малоядовитые или нейтральные соединения. Лишь сравнительно небольшое количество соединений может выводиться из организма в неизмененном виде. Биотрансформация веществ, кроме изменения токсичности, ведет к снижению липоидорастворимости, повышению полярности молекул и растворимости образовавшихся веществ в воде, что способствует выведению их с мочой.
Метаболизм ядов протекает при каталитическом участии микросомальных ферментов печени, ферментов митохондрий и других ферментов.
Типичными механизмами биотрансформации химических веществ считаются: окисление, восстановление, гидролиз и коньюгация.
Окисление относится к наиболее распространенным механизмам биотрансформации ядов. Окисление с участием микросомальных ферментов сводится в основном к гидроксилированию, включающему: ароматическое гидроксилирование, ациклическое окисление, дезалкилирование, дезаминирование, сульфирование. Такими реакциями осуществляется, например, метаболизм барбитуратов, морфина и других фармакологических препаратов. Оксидазы и дегидрогеназы митохондрий катализируют окислительное дезаминирование, окисление спиртов, альдегидов. Синильная кислота в организме может окисляться до циановой кислоты, имеющей меньшую токсичность и легко подвергающуюся гидролизу с образованием неядовитых продуктов.
Большинство алифатических и ароматических спиртов через стадию образования альдегида превращаются в соответствующие кислоты, например, метиловый спирт — в муравьиную кислоту, а бензиловый — в бензойную. Моноциклические и полициклические углеводороды в большинстве случаев окисляются до фенолов. Типичным примером является окисление бензола до фенола, гидрохинона, пирокатехина и, частично, до ненасыщенной муконовой кислоты.
Метильные группы легко окисляются в карбоксильные. Кетоны часто восстанавливаются до вторичных спиртов.
Летальный синтез, о котором упоминалось выше, чаще всего связан с процессом окисления. Неядовитая фторуксусная кислота в организме животных окисляется в цикле трикарбоновых кислот до фторлимонной кислоты, относящейся к весьма ядовитым соединениям. Известно, что такие яды, как метиловый спирт, этиленгликоль, анилин и другие соединения в организме окисляются до метаболитов, по токсичности превосходящих своих предшественников.
Восстановление может приводить к образованию как менее токсичных, так и более ядовитых продуктов. Восстановлению подвергаются ароматические нитро- и азосоединения. В этих реакциях участвуют микросомальные ферменты.
Гидролиз относится к распространенным механизмам инактивации ядовитых веществ. Однако некоторые мышьяксодержащие вещества в результате гидролиза переходят в весьма ядовитый арсеноксид. В процессе гидролиза активное участие принимают эстеразы. Поскольку они синтезируются в печени, можно представить, насколько важно максимально сохранить функцию органа в период острой интоксикации. Сложные эфиры, кроме ферментативного гидролиза, в тканях и крови подвергаются щелочному гидролизу.
Яды и их метаболиты образуют в организме коньюгаты с эндогенными субстратами (глюкуроновой кислотой, сульфатом, ацетилом, глицерином, метилом). Коньюгаты отличаются большей полярностью молекул и растворимостью в воде, меньшей липоидорастворимостью. По этой причине коньюгаты легко выводятся из организма.
Выделение химических веществ или их метаболитов из организма осуществляется всеми органами, обладающими внешнесекреторной функцией. Большинство чужеродных для организма веществ выводится в основном с мочой и желчью, хотя происходит выделение их также с выдыхаемым воздухом, молоком, слюной, секрецией в пищеварительный тракт, с потом.
Летучие соединения (бензол, анилин, окись углерода, спирты) выделяются через дыхательные пути в неизмененном состоянии.
Выделение яда через легкие является, как правило, наиболее быстрым. Однако скорость выведения, даже при равных концентрациях летучих соединений в крови, неодинакова и находится в зависимости от физико-химических свойств вещества. Особенно быстро выделяются через легкие газы и пары с малым коэффициентом растворимости в воде: бензин, бензол, хлороформ, четырех-хлористый углерод и т. д. Напротив, вещества, характеризующиеся высоким значением этого коэффициента, например ацетон или спирт, выделяются медленно.
Выделение с мочой происходит путем клубочковой фильтрации, пассивного и активного транспорта в канальцах. В дистальных канальцах наблюдается пассивный транспорт химических веществ через мембрану. Липоидорастворимые соединения, находящиеся в фильтрате клубочков в неионизированном состоянии, подвергаются реабсорбции в кровяное русло, а соединения с низкой растворимостью в липидах почти не реабсорбируются. Вещества, у которых степень ионизации в моче больше, чем в крови, способны проникать из крови в клубочки. В проксимальных канальцах из крови в мочу происходит активный транспорт химических веществ и выделение сильных органических кислот и сильных оснований против высоких градиентов концентрации. Такой же механизм активного транспорта присущ и слабым органическим электролитам.
Химические вещества после всасывания из желудочно- кишечного тракта по воротной вене поступают в печень и, в виде метаболитов или коньюгатов, транспортируются в желчь (или переходят в кровь). Установлено, что многие соединения (метиловый спирт, анилин, никотин) выделяются в желудочно-кишечный тракт через слизистую оболочку желудка. Слабые органические кислоты и основания, ионизированные при рН кишечного содержимого, при соответствующем градиенте концентрации проникают из плазмы крови в кишечник. Через толстый кишечник выделяются мышьяк, ртуть, свинец и другие яды.
Химические вещества в незначительном количестве выводятся с потом и слюной. Биологически активные вещества (фармакологические препараты, алкогольные напитки, наркотики) принятые кормящей матерью, выделяются с молоком и могут вызвать острое отравление у ребенка.
По современным представлениям, характер течения интоксикации тесно связан с индивидуальным характером метаболизма и элиминации химических веществ, из-за чего возникают различия в токсичности. На скорость реакций образования метаболитов влияют различные факторы, как генетические, физиологические, так и факторы окружающей среды.
Токсикокинетические методы позволяют более объективно устанавливать величины предельно допустимых уровней вредных веществ в воздухе, воде и иных средах. Применение методов токсикокинетического анализа позволяет повысить эффективность и точность гигиенических исследований, открывает большие возможности для прогнозирования параметров токсичности и кумулятивного действия новых соединений.
Для оценки экологической ситуации при загрязнении окружающей среды представляется целесообразным широкое исследование действия химических загрязнителей на фауну и флору с использованием токсикокинетических методов. Изучая процессы поступления химических веществ в организм растения, можно получить дополнительную характеристику химических веществ по способности накапливаться в растениях.
Литература:
Барышников И.И., Лойт А.О., Савченков М.Ф. Экологическая токсикология. Иркутск: Изд-во Иркут. ун-та, 1991
Дж. Уэр. Проблемы загрязнения окружающей среды и токсикологии. М.: Изд-во «Мир», 1993
Ревич Б.А., Аванский С.Л., Тихонова Г.И. Экологическая эпидемиология. М.: Издательский центр «Академия», 2004