
- •7. Электрофорез
- •8.Ультрацентрифугирование
- •12. Специфичность ферментов
- •15.Неспецифическая регуляция ферментативной активности
- •24,25,38Синтез гликогена.
- •Распад гликогена.
- •Синтез кетоновых тел.
- •33)Липи́ды (от греч. Λίπος, lípos — жир) — широкая группа органических соединений, включающая жирные кислоты, а также их производные, как по радикалу, так и по карбоксильной группе.
1.ФЕРМЕНТЫ (от лат. fermentum - закваска) (энзимы), белки, выполняющие роль катализаторов в живых организмах. Осн. ф-ции ферментов- ускорять превращение в-в, поступающих в организм и образующихся при метаболизме (для обновления клеточных структур, для обеспечения его энергией и др.), а также регулировать биохим. процессы (напр., реализацию ге-нетич. информации), в т. ч. в ответ на изменяющиеся условия.О механизме р-ций с участием ферментов (ферментативных р-циях.Структуру ферментов изучают методами хим. модификации, рентгеновского структурного анализа, спектроскопии. Ценные результаты получены методом сайт-специфичного мутагенеза, основанного на направленной замене аминокислот в белковой молекуле методами генетической инженерии. К кон. 20 в. известно и охарактеризовано ок. 3000 ферментов.Классификация ферментов. Исторически многим ферментам присваивались тривиальные названия, часто не связанные с типом катализируемой р-ции. Для преодоления возникших трудностей в сер. 20 в. были разработаны классификации и номенклатура ферментов. По рекомендации Международного биохим. союза, все ферменты в зависимости от типа катализируемой р-ции делят на 6 классов: 1-й - оксидоредуктазы, 2-й - трансферазы, 3-й - гидролазы, 4-й - лиазы, 5-й - изомеразы и 6-й - лигазы. Каждый класс делится на подклассы, в соответствии с природой функц. групп субстратов, подвергающихся хим. превращению. Подклассы, в свою очередь, делятся на подпод-классы в зависимости от типа участвующего в превращении фермента. Каждому достаточно охарактеризованному ферменту присваивается классификационный номер из 4 цифр, обозначающих класс, подкласс, подподкласс и номер самого ферменты Напр., a-химотрипсин имеет номер 3.4.21.1.К оксидоредуктазам относятся ферменты, катализирующие окислит.-восстановит. р-ции. Ферменты этого типа переносят атомы H или электроны. Многие оксидоредуктазы являются ферментами дыхания и окислительного фосфорилирования.Трансферазы катализируют перенос функц. групп (CH3, COOH, NH2, CHO и др.) от одной молекулы к другой.Гидролазы катализируют гидролитич. расщепление связей (пептидной, гликозидной, эфирной, фосфодиэфирной и др·)Л и а з ы катализируют негидролитич. отщепление групп от субстрата с образованием двойной связи и обратные р-ции. Эти ферменты могут отщеплять CO2, H2O, NH3 и др.Изомеразы катализируют образование изомеров субстрата, в т. ч. цис-, транс-изомеризацию, перемещение кратных связей, а также групп атомов внутри молекулы.Л и г а з ы - ферменты, катализирующие присоединение двух молекул с образованием новых связей (С — С, С — S, С — О, С — N и др.), как правило, сопряженное с расщеплением пирофос-фатной связи, напр. у АТФ.Медицинское значениеСвязь между ферментами и наследственными болезнями обмена веществ была впервые установлена А. Гэрродом в 1910-е гг. Гэррод назвал заболевания, связанные с дефектами ферментов, «врожденными ошибками метаболизма».Если происходит мутация в гене, кодирующем определенный фермент, может измениться аминокислотная последовательность фермента. При этом в результате большинства мутаций его каталитическая активность снижается или полностью пропадает. Если организм получает два таких мутантных гена (по одному от каждого из родителей), в организме перестает идти химическая реакция, которую катализирует данный фермент. Например, появление альбиносов связано с прекращением выработки фермента тирозиназы, отвечающего за одну из стадий синтеза темного пигмента меланина. Фенилкетонурия связана с пониженной или отсутствующей активностью фермента фенилаланин-4-гидроксилазы в печени.
2.В изоэлектрической точке суммарный заряд белков, обладающих амфотерными свойствами, равен нулю и белки не перемещаются в электрическом поле. Зная аминокислотный состав белка, можно приближенно определить изоэлектрическую точку (pI); pI является характерной константой белков. Изоэлектрическая точка большинства белков животных тканей лежит в пределах от 5,5 до 7,0, что свидетельствует о частичном преобладании кислых аминокислот. Однако в природе имеются белки, у которых значения изоэлектрических точек лежат в крайних значениях рН среды. В частности, величина рI пепсина (фермент желудочного сока) равна 1, а сальмина (основной белок из молоки семги) – почти 12.В изоэлектрической точке белки наименее устойчивы в растворе и легко выпадают в осадок. Изоэлектрическая точка белка в сильной степени зависит от присутствия в растворе ионов солей; в то же время на ее величину не влияет концентрация белка.
3. К ферментам применимы три основных критерия, характерных и для неорганических катализаторов. В частности, они остаются неизмененными после реакции, т.е. освобождаясь, могут вновь реагировать с новыми молекулами субстрата (хотя нельзя исключить побочных влияний условий среды на активность фермента). Ферменты способны оказывать действие в ничтожно малых концентрациях (например, одна молекула фермента реннина, содержащегося в слизистой оболочке желудка теленка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37°С). Наличие либо отсутствие фермента или любого другого катализатора не оказывает влияния на величину константы равновесия и свободной энергии (ΔG). Катализаторы лишь повышают скорость, с которой система приближается к термодинамическому равновесию, не сдвигая точки равновесия. Химические реакции с высокой константой равновесия и отрицательной величиной ΔG принято называть экзергоническими. Реакции с низкой константой равновесия и соответственно положительной величиной ΔG (они обычно не протекают спонтанно) называются эндерго-ническими. Для начала и завершения этих реакций необходим приток энергии извне. В живых системах экзергонические процессы обычно сопряжены с эндергоническими реакциями, обеспечивая последние необходимым количеством энергии.Термолабильность ферментов. Скорость химических реакций зависит от температуры, поэтому катализируемые ферментами реакции также чувствительны к изменениям температуры. Установлено, что скорость большинства биохимических реакций повышается в 2 раза при повышении температуры на 10°С и, наоборот, снижается в 2 раза при понижении температуры на 10°С. Этот показатель получил название температурного коэффициента. Однако вследствие белковой природы фермента тепловая денатурация при повышении температуры будет снижать эффективную концентрацию фермента с соответствующим снижением скорости реакции. Так, при температуре, не превышающей 45–50°С, скорость реакции увеличивается согласно теории химической кинетики. При температуре выше 50°С на скорость реакции большое влияние начинает оказывать тепловая денатурация белка-фермента, приводящая к полному прекращению ферментативного процесса (рис. 4.16). Специфичность ферментов. Ферменты обладают высокой специфичностью действия. Это свойство часто существенно отличает их от неорганических катализаторов. Так, мелкоизмельченные платина и палладий могут катализировать восстановление (с участием молекулярного водорода) десятков тысяч химических соединений различной структуры. Высокая специфичность ферментов обусловлена, как было отмечено, конфор-мационной и электростатической комплементарностью между молекулами субстрата и фермента и уникальной структурной организацией активного центра, обеспечивающими «узнавание», высокое сродство и избирательность протекания одной какой-либо реакции из тысячи других химических реакций, осуществляющихся одновременно в живых клетках.В зависимости от механизма действия различают ферменты с относительной (или групповой) и абсолютной специфичностью. Так, для действия некоторых гидролитических ферментов наибольшее значение имеет тип химической связи в молекуле субстрата. Например, пепсин в одинаковой степени расщепляет белки животного и растительного происхождения, несмотря на то что эти белки существенно отличаются друг от друга как по химическому строению и аминокислотному составу, так и по физико-химическим свойствам. Однако пепсин не расщепляет ни углеводы, ни жиры. Объясняется это тем, что точкой приложения, местом действия пепсина является пептидная —СО—NH-связь. Для действия липазы, катализирующей гидролиз жиров на глицерин и жирные кислоты, подобным местом является сложноэфирная связь. Аналогичной групповой специфичностью обладают трипсин, химотрипсин, пептидазы, ферменты, гидроли-зующие α-гликозидные связи (но не β-гликозидные связи, имеющиеся в целлюлозе) в полисахаридах, и др. Обычно эти ферменты участвуют в процессе пищеварения, и их групповая специфичность, вероятнее всего, имеет определенный биологический смысл. Относительной специфичностью наделены также некоторые внутриклеточные ферменты, например гексокиназа, катализирующая в присутствии АТФ фосфорилиро-вание почти всех гексоз, хотя одновременно в клетках имеются и специфические для каждой гексозы ферменты, выполняющие такое же фос-форилирование (см. главу 10).Абсолютной специфичностью действия называют способность фермента катализировать превращение только единственного субстрата. Любые изменения (модификации) в структуре субстрата делают его недоступным для действия фермента. Примерами таких ферментов могут служить аргиназа, расщепляющая в естественных условиях (в организме) аргинин, уреаза, катализирующая распад мочевины, и др.
4.Четыре уровня организации молекулы белка-фермента и стабилизирующие их связи Уровни организации белковой молекулы
Для того чтобы разобраться в замысловатой укладке (архитектонике) белковой макромолекулы, следует рассмотреть в ней несколько уровней организации. Первичной, самой простой структурой является полипептидная цепь, т. е. нить аминокислот, связанных между собой пептидными связями. В первичной структуре все связи между аминокислотами являются ковалентными и, следовательно, прочными ( рис. 7 ). Следующий, более высокий уровень организации - это вторичная структура, когда белковая нить закручена в виде спирали. Между группами -СООН, находящимися на одном витке спирали, и группами -NH2 на другом витке образуются водородные связи. Они возникают на основе водорода, чаще всего находящегося между двумя отрицательными атомами (см. рис. 7 ). Водородные связи слабее ковалентных, но при большом их числе обеспечивают образование достаточно прочной структуры. Нить аминокислот (полипептид) далее свертывается, образуя клубок, или фибриллу или глобулу, для каждого белка специфичную. Таким образом, возникает сложная конфигурация, называемая третичной структурой . Определение ее производят обычно с помощью метода рентгеноструктурного анализа , который позволяет установить положение в пространстве атомов и групп атомов в кристаллах и сложных соединениях. Связи, поддерживающие третичную структуру белка, также слабые. Они возникают, в частности, вследствие гидрофобных взаимодействий. Это силы притяжения между неполярными молекулами или между неполярными участками молекул в водной среде. Гидрофобные остатки некоторых аминокислот в водном растворе сближаются, "слипаются" и стабилизируют, таким образом, структуру белка. Кроме гидрофобных сил, в поддержании третичной структуры белка существенную роль играют электростатические связи между электроотрицательными и электроположительными радикалами аминокислотных остатков. Третичная структура поддерживается также небольшим числом ковалентных дисульфидных -S-S-связей, возникающих между атомами серы серусодержащих аминокислот. Надо сказать, что и третичная; структура белка не является конечной. К макромолекуле белка нередко оказываются присоединенными макромолекулы такого же белка или молекулы иных белков. Например, сложная молекула гемоглобина - белка, находящегося в эритроцитах, состоит из четырех макромолекул глобинов: двух альфа-цепей и двух бета-цепей, каждая из которых соединена с железосодержащим гемом. В результате их объединения образуется функционирующая молекула гемоглобина (см. рис. 7 ). Только в такой упаковке гемоглобин работает полноценно, т. е. способен переносить кислород. Благодаря соединению нескольких молекул белков между собой образуется четвертичная структура (см. рис. 7 ). Если пептидные цепи уложены в виде клубка, то такие белки называются глобулярными. Если полипептидные цепи уложены в пучки нитей, они носят название фибриллярных белков. Начиная со вторичной структуры пространственное устройство (конформация) макромолекул белка, как мы выяснили, поддерживается в основном слабыми химическими связями. Под влиянием внешних факторов (изменение температуры, солевого состава среды, рН, под действием радиации и иных факторов) слабые связи, стабилизирующие макромолекулу, рвутся, и структура белка, а следовательно, и его свойства изменяются. Этот процесс называется денатурацией . Разрыв части слабых связей, изменения конформации и свойств белка происходят и под действием физиологических факторов (например, под действием гормонов). Таким образом регулируются свойства белков: ферментов, рецепторов, транспортеров. Эти изменения структуры белка обычно легко обратимы. Разрыв большого числа слабых связей ведет к денатурации белка, которая может быть необратимой (например, свертывание яичного белка при кипячении яиц). Иногда и денатурация белка имеет биологический смысл. Например, паук выделяет капельку секрета и приклеивает ее к какой-нибудь опоре. Затем, продолжая выделять секрет, он слегка натягивает ниточку, и этого слабого натяжения оказывается достаточно, чтобы белок денатурировался, из растворимой формы перешел в нерастворимую, и нить приобрела прочность.
5.Диализ — освобождение коллоидных растворов и растворов высокомолекулярных веществ от растворённых в них низкомолекулярных соединений при помощи полупроницаемой мембраны. При диализе молекулы растворенного низкомолекулярного вещества проходят через мембрану, а неспособные диализировать (проходить через мембрану) коллоидные частицы остаются за ней. Простейший диализатор представляет собой мешочек из коллодия (полупроницаемого материала), в котором находится диализируемая жидкость. Мешочек погружают в растворитель (например в воду). Постепенно концентрации диализирующего вещества в диализируемой жидкости и в растворителе становятся равными. Меняя растворитель, можно добиться практически полной очистки от нежелательных примесей. Скорость диализа обычно крайне низка (недели). Ускоряют процесс диализа увеличивая площадь мембраны и температуру, непрерывно меняя растворитель. Процесс диализа основан на процессах осмоса и диффузии, что объясняет способы его ускорения.Диализ применяют для очистки коллоидных растворов от примесей электролитов и низкомолекулярных неэлектролитов. Диализ применяют в промышленности для очистки различных веществ, например в производстве искусственных волокон, при изготовлении лекарственных веществ.Материал, прошедший через мембрану, называется диализат. Простейшее устройство для диализа — диализатор — мешочек или гильза из полупроницаемого материала, который заполняют очищаемой (диализуемой) жидкостью и погружают в растворитель (дисперсионную среду). Вместо мешочка часто используют цилиндрический сосуд с полупроницаемой мембраной вместо дна. В основе диализа лежат процессы диффузии в твердом теле, поэтому он протекает достаточно медленно. Диализ ускоряется с увеличением отношения площади мембран к объёму диализуемой жидкости, с повышением температуры, при перемешивании, при создании разницы в давлениях по разные стороны мембраны.Диализ в электрическом поле — электродиализ — в десятки раз ускоряет очистку диализуемых систем от электролитов. Простой электродиализатор состоит из трёх камер, отделённых одна от другой мембранами. В среднюю камеру заливают очищаемую жидкость, а в боковых проточных камерах расположены электроды, погруженные в растворитель. Ионы в постоянном электрическом поле направленно перемещаются к соответствующим электродам, проникая при этом сквозь мембраны из средней камеры в боковые. Для большей эффективности процесса применяются многокамерные электродиализаторы.Диализ и электродиализ находят применение во многих технологических процессах, в физико-химических и биологических исследованиях, а также в медицине. Метод, получивший название вивидиффузии, в 1913 был использован американским учёным Абелем для изучения составных частей крови живого организма. Кровь животного проходила из артерии в вену через коллодиевые трубки, помещённые в стеклянный цилиндр, заполненный физиологическим раствором. Аппарат Абеля явился основой конструкции искусственной почки, с помощью которой проводят гемодиализ.
6.АФФИННАЯ ХРОМАТОГРАФИЯ (от лат. affinis - родственный) (биоспецифич. хроматография, хроматография по сродству), метод очистки и разделения белков, основанный на их избират. взаимод. с лигандом, ковалентно связанным с инертным носителем. В кач-ве лигандов используют соед., взаимод. к-рых с разделяемыми в-вами основано на биол. ф-ции последних. Так, при разделении ферментов (для чего преим. и применяется аффинная хроматография) лигандами служат их субстраты, ингибиторы или коферменты. Главная особенность, к-рая обусловливает высокую эффективность аффинной хроматографии, состоит в том, что разделение основано на различии не физ.-хим. признаков молекулы (заряда, формы и размера), а специфич. функциональных св-в, отличающих данный фермент от множества др. биополимеров. Неподвижная фаза в аффинной хроматографии представляет собой специально получаемый сорбент, построенный обычно по схеме: носитель - соединяющее звено ("ножка") - специфич. лиганд. Носителем служит чаще всего сефарозапроизводное агарозы, имеющее поперечные сшивки. Присоединение к ней лиганда или "ножки", содержащих, как правило, аминогруппу, осуществляется после активации сефарозы бромцианом: ХРОМАТОГРАФИЯ, метод разделения, анализа и физ.-хим. исследования в-в. Обычно основана на распределении исследуемого в-ва между двумя фазами - неподвижной и подвижной (элюент). Неподвижная фаза гл. обр. представляет собой сорбент с развитой пов-стью, а подвижная - поток газа (пара, флюида -в-во в сверхкритич. состоянии) или жидкости. Поток подвижной фазы фильтруется через слой сорбента или перемещается вдоль слоя сорбента. По механизму разделения в-в различают адсорбционную, распределительную, ионообменную, эксклюзионную, аффинную (биоспецифическую), осадочную хроматографию.Содержание лиганда колеблется от 0,1 до 10 мкмоль на 1 г влажного сорбента. Сефароза, однако, малоустойчива к действию ряда хим. в-в и микроорганизмов.
Более стабильны макропористые неорг. носители (кремнезем, стекло) и орг. полимеры. Если лиганд присоединяется непосредственно к носителю, эффективность специфич. взаимод. с ферментом заметно снижается вследствие пространств. затруднений. "Ножка", как правило, устраняет стерич. препятствия, отдаляя лиганд от носителя. Как и носитель, она должна быть инертной и не влиять на процессы в ходе аффинной хроматографии, чего, однако, не всегда удается достигнуть. Напр., присоединение "ножки" по приведенной выше р-ции приводит к образованию катионной группировки изомочевины, и сорбент приобретает св-ва анионита. В кач-ве "ножки" используют обычно ди- и полиамины,аминокислоты, пептиды, олигосахариды. Лигандами могут служить субстраты (напр., крахмал или гликоген при разделении амилаз), однако их превращ. в ходе аффинной хроматографии, катализируемое разделяемым ферментом, постоянно изменяет св-ва сорбента. Поэтому, как правило, применяют аналоги субстратов, устойчивые к дальнейшему превращ., т.е. ингибиторы ферментов. Так, для выделения протеиназ используют не расщепляемые ими пептиды D-аминокислот. Эффективны прир. ингибиторы ферментов, напр. пепстатин - ингибитор аспартильных протеиназ. Иногда применяют лиганды, связывающие большие группы родственных ферментов (в частности, киназы и дегидрогеназы). Примеры таких "группоспецифич." лигандов-антрахиноновые красители, аналоги никотинамидадениндину-клеотида. Известны лиганды (напр., производные фенилборной к-ты), имитирующие при взаимод. с ферментом структуру переходного комплекса с субстратом. Такие лиганды эффективны при выделении сериновых гидролаз. Разделение в аффинной хроматографии обычно проводят на хроматографич. колонках; иногда разделяемую смесь помещают в сосуд с сорбентом и выдерживают до полного связывания исследуемого компонента. Затем сорбент (в колонке или сосуде) промывают буферным р-ром для удаления несвязавшихся в-в, после чего десорбируют исследуемый компонент. Десорбция (элюция) последнего обычно достигается повышением ионной силы, изменением рН буферного р-ра или добавлением в него орг. р-рителя, что ослабляет взаимод. лиганд - фермент. Более избирательна десорбция р-ром лиганда. Помимо ферментов, методом аффинной хроматографии можно выделять также токсины, рецепторы, ингибиторы, транспортные белки и др. биологически активные в-ва. Высокой избирательностью отличается т. наз. иммуносорбция, при к-рой в кач-ве лиганда используют антитела, обладающие специфичностью к выделяемым белкам; особенно эффективны моноклональные антитела.
7. Электрофорез
Термином «электрофорез» описывается процесс разделения ферментов на основе дифференциальной их миграции в электрическом поле. При проведении лабораторных работ в области аналитической биохимии электрофорез представляет собой метод, обеспечивающий высшую степень разделения ферментов на принципах физико-химической сепарации. Поэтому указанный метод изучался прежде всего с точки зрения препаративной сепарации. Именно для такого предназначения создано несколько специальных приборов. Однако необходимо иметь в виду, что на электрофоретическую подвижность ферментов решающим образом влияет ряд факторов; они могут быть ответственными за разочаровывающие результаты. Во-первых, электрофоретическая подвижность макромолекул низка, вследствие чего соответствующая операция разделения характеризуется малой скоростью и диффузия будет приводить к размыванию концентрационных зон, а ферменты — смешиваться с медленно движущимися продуктами электролиза. Подвижность молекул варьирует в обратном отношении к вязкости среды. Если отвод тепла от различных участков поперечного сечения сепарационной камеры происходит с разной интенсивностью, то подвижность молекул по поперечному сечению будет варьировать. Это обусловлено вариациями температуры по поперечному сечению и зависимостью вязкости от температуры. Наличие твердой фазы, хотя она сама по себе и не важна как объект для выделения, контролирует конвекционные возмущения потоков в сепарационной камере и вызывает гравитационные разрушения уплотненных зон. Твердая фаза также уменьшает подвижность молекул. Эти и другие проблемы осложняют применение методов перепаративного электрофореза. Капитальные затраты, относящиеся особенно к оформлению процессов охлаждения сепарационной камеры, удалению из нее продуктов электролиза и обеспечению безопасности эксплуатации, довольно высоки. Электрофорез может играть определенную роль только в процессах крупномасштабного выделения некоторых ферментов, особенно при сепарации ферментационных мультисубъединиц, которые подвержены разрушению в присутствии твердой фазы и требуются при хроматографии.Электрофорез - это движение дисперсных частиц в жидкости с различной скоростью в постоянном электрическом поле.Это явление впервые наблюдалось в 1807 году Рейсом, который заметил, что применение постоянного электрического поля, заставляет частицы дисперсной взвеси глины мигрировать в водной среде, что вызвано разностью потенциалов между поверхностью частиц и окружающей жидкостной средой.Электрофорез является единственно надежным способом обнаружения парапротеинов в биологических жидкостях, а также является уникальным методом скрининга. Благодаря данной методике возможно обнаружение изменений сывороточных белков, связанных с определенной патологие.Выявленные изменения по сравнению с нормальной структурой белка сыворотки, предупреждает врача о необходимости проведения дополнительного анализа белков.Электрофорез на агарозном геле является наиболее распространенным методом. В настоящее время используется в клинической диагностики для обнаружения парапротеинов в сыворотке крови и моче.Клиническое использование электрофореза в анализе белков, как правило, базируется на простом и электрофоретическом разделении белков с учетом их относительной мобильности и молекулярной массой.