Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ОСБ.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
204.29 Кб
Скачать

2. Понятие простого и сложного процента

Под процентными деньгами или, кратко, процентами в финансовых расчетах понимают абсолютную величину дохода от предоставления денег в долг в любой форме: в виде выдачи денежной ссуды, продажи в кредит, помещении денег на сберегательный счет, учет векселя, покупка сберегательного сертификата или облигаций и т.д.

В какой бы форме не выступали проценты, это всегда конкретное проявление такой экономической категории, как ссудный процент.

При заключении финансового или кредитного соглашения стороны (кредитор и заемщик) договариваются о размере процентной ставки – отношения суммы процентных денег, выплачиваемых за фиксированный отрезок времени к величине ссуды. Интервал времени, к которому относится процентная ставка, называют периодом начисления. Ставка измеряется в процентах, в виде десятичной или натуральной дроби. В последнем случае она фиксируется в контрактах с точностью до 1/16 или даже 1/32.

Начисление процентов, как правило, производится дискретно, т.е. в отдельные (обычно равноотстоящие) моменты времени (дискретные проценты), причем, в качестве периодов начисления принимают год, полугодие, квартал, месяц. Иногда практикуют ежедневное начисление, а в ряде случаев удобно применять непрерывные проценты.

Проценты либо выплачиваются кредитору по мере их начисления, либо присоединяются к сумме долга. Процесс увеличения денег в связи с присоединением процентов к сумме долга называют наращением или ростом первоначальной суммы.

В количественном финансовом анализе процентная ставка применяется не только как инструмент наращения суммы долга, но и в более широком смысле – как измеритель степени доходности (эффективности) финансовой операции или коммерческо-хозяйственной деятельности.

В практике существуют различные способы начисления процентов, зависящие от условий контрактов. Соответственно применяют различные виды процентных ставок. Одно из основных отличий связано с выбором исходной базы (суммы) для начисления процентов. Ставки процентов могут применяться к одной и той же начальной сумме на протяжении всего срока ссуды или к сумме с начисленными в предыдущем периоде процентами. В первом случае они называются простыми, а во втором – сложными процентными ставками.

Процентные ставки, указываемые в контрактах, могут быть постоянными или переменными («плавающими»). Плавающие ставки часто применяются во внешнеэкономических операциях. В этом случае значение ставки равно сумме некоторой изменяющейся во времени базовой величины и надбавки к ней (маржи). Примером базовой ставки может служить лондонская межбанковская ставка ЛИБОР (LIBOR – London interbank offered rate) или московская межбанковская ставка МИБОР. Размер маржи определяется целым рядом условий (сроком операции и т.д.).

3. Будущая и текущая стоимость денежной единицы

Для определения стоимости собственности, приносящей доход, необходимо определить текущую стоимость денег, которые будут получены через некоторое время в будущем.

Известно, что в условиях инфляции куда более очевидно, что деньги изменяют свою стоимость с течением времени. Основными операциями, позволяющими сопоставить разновременные деньги, являются операции накопления (наращивания) и дисконтирования.

Накопление – это процесс приведения текущей стоимости денег к их будущей стоимости, при условии, что вложенная сумма удерживается на счету в течение определенного времени, принося периодически накапливаемый процент.

Дисконтирование – это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

В оценке эти финансовые расчеты базируются на сложном процессе, когда каждое последующее начисление ставки процента осуществляется как на основную сумму, так и на начисленные за предыдущие периоды невыплаченные проценты.

Будущая стоимость денежной единицы (накопленная сумма денежной единицы).

где FV – будущая стоимость денежной единицы;

PV – текущая стоимость денежной единицы;

i – ставка дохода;

n – число периодов накопления, в годах.

Если начисления осуществляются чаще, чем один раз в год, то формула преобразуется в следующую:

где, k – частота накоплений в год.

 Данная функция используется в том случае, когда известна текущая стоимость денег и необходимо определить будущую стоимость денежной единицы при известной ставке доходов на конец определенного периода (n).

Текущая стоимость единицы (текущая стоимость реверсии перепродажи).

Если начисление процентов осуществляется чаще, чем один раз в год, то