
- •Содержание
- •Глоссарий 7
- •Конспект лекционных занятий
- •3. Практические занятия
- •4. Лабораторные занятия
- •5. Самостоятельная работа студентов
- •7 Экзаменационные вопросы 181
- •8 Технические средства обучения 182
- •Список рекомендуемой литературы 182
- •1. Глоссарий
- •2 Конспект лекционных занятий модуль 1 Лекция № 1. Перспективы развития технологии органических веществ (2 часа)
- •0,5 О2 носн2-сн2он
- •О носн2-сн2nh2
- •Лекция № 2. Физико-химические основы термического крекинга
- •Лекция № 3. Физико-химические основы каталитического крекинга
- •Лекция № 4. Физико-химические основы каталитического риформинга
- •Лекция № 5. Физико-химические основы гидрогенизационных процессов
- •Лекция № 7. Химизм и механизм технологических процессов переработки нефтяных газов
- •Лекция № 8 Технологическое оборудование и технологическое оформление основных аппаратов процессов переработки органических веществ
- •Лекция № 10 Теоретические основы очистки нефтяных фракций
- •Лекция № 11 Адсорбционные и каталитические методы очистки
- •Лекция № 12 Очистка с применением избирательных растворителей
- •Лекция № 13 Депарафинизация масел и дизельных фракций
- •3. Практические занятия
- •Практическое занятие №1
- •Тема: Расчетные методы определения физико-химических свойств
- •И состава нефти и нефтепродуктов
- •Задачи для решения
- •Практическое занятие №2 Тема: Расчетные методы вычисления материального баланса процесса термического крекинга
- •Составление материального баланса
- •Задачи для решения
- •Практическое занятие №3 Тема: Составление материального баланса процесса каталитического крекинга
- •Задачи для решения
- •Практическое занятие №4 Тема: Составление материального баланса процесса каталитического риформинга
- •Задачи для решения
- •Практическое занятие №5 Тема: Расчетные методы вычисления материального баланса гидрогенизационных процессов
- •Задачи для решения
- •Практическое занятие №6 Тема: Расчетные методы вычисления материального баланса процесса полимеризационных процессов
- •Задачи для решения
- •Практическое занятие №7 Тема: Задачи и упражнения по составлению уравнений химических реакций, протекающих при алкилировании и изомеризации с указанием механизма ее протекания
- •Задачи для решения
- •Практическое занятие №8 Тема: Технологический расчет основных аппаратов установок переработки органических веществ
- •Число тарелок
- •Практическое занятие №9 Тема: Приближенные методы построения линии однократного испарения (ои)
- •Задачи для решения
- •Практическое занятие №10 Тема: Решение задач по теоретическим основам процесса очистки нефтяных фракций
- •Задачи для решения
- •Практическое занятие №11 Тема: Решение задач по депарафинизации нефтяных фракций
- •Задачи для решения
- •Практическое занятие №12 Тема: Решение задач по закономерностям получения гомогенных растворов
- •Задачи для решения
- •4. Лабораторные занятия лабораторная работа №1 Тема: Термический крекинг (пиролиз) углеводородов и составление материального баланса опыта
- •Описание установки и методика проведения работы
- •Лабораторная работа №2 Тема: Каталитический крекинг углеводородов и составление материального баланса опыта
- •Проведение работы
- •Оформление результатов работы
- •Методика проведения эксперимента
- •Приготовление алюмохромового оксидного катализатора
- •Методика выполнения работы
- •Лабораторная работа №5 Тема: Полукоксование
- •Описание установки и методика проведения работы
- •Лабораторная работа №6 Аппараты установок термических и каталитических процессов. Тема: Методы разделения и анализа продуктов реакций
- •Методика проведения работы
- •Методика проведения работы
- •Лабораторная работа №7 Тема: Разгонка нефти на ректификационном аппарате
- •Лабораторная работа №8 Тема: Очистка сырой нефти от влаги и механических примесей
- •Определение сухого остатка
- •Методика определения
- •Прокаленный остаток
- •Методика определения
- •Лабораторная работа №9 Тема: Депарафинизация бензиновой фракции карбамидным методом
- •Методика определения
- •Лабораторная работа №10 Тема: Адсорбционная очистка масляных дистиллятов
- •Порядок выполнения работ
- •5. Самостоятельная работа студентов под руководством преподавателей (срсп) срсп №1. Реакционная способность органических соединений. Электронные эффекты
- •Срсп № 2. Классификация органических реакций
- •Срсп № 3. Характеристика основных механизмов реакций органических соединений
- •Срсп № 4. Образование пироуглерода и сажи
- •Срсп №5. Термические превращения углеводородов в жидкой фазе
- •Срсп №6. Процесс коксования нефтяного сырья
- •Срсп №7. Кислотный катализ
- •Реакции карбкатионов
- •Срсп №8. Классификация каталитических реакций и катализаторов
- •Энергия активации каталитической реакции
- •Срсп №9. Кинетика газофазных реакций в присутствии твердых катализаторов
- •Срсп №10. Теоретические основы подготовки и переработки газообразного сырья
- •6. Самостоятельная работа студентов срс
- •7 Экзаменационные вопросы
- •8 Технические средства обучения
- •Список рекомендуемой литературы
- •9.1 Основная литература
- •9.2 Дополнительная литература
Методика определения
Процесс определения нормальных метановых углеводородов сводится к следующему. В высокий стакан из толстого стекла берут навеску фракции и разбавляют растворителем, затем добавляют твёрдый карбамид в соотношениях 1:2 для бензиновых, керосиновых фракций и 1:3 или 1:4 для масляных фракций и вливают активатор, всё тщательно перемешивают.
Активатор лучше вливать порциями, каждый раз энергично перемешивая смесь. Если активатор влить сразу, то при больших количествах нормальных метановых углеводородов может образоваться корочка комплекса или шарики, которые нужно разбивать. По этой же причине не рекомендуется активировать карбамид спиртом до перемешивания его с фракцией.
Для того чтобы осадок (комплекс) не прошёл в фильтрат, рекомендуется положить в воронку два фильтра. Комплекс промывают 2-3 раза небольшим количеством охлаждённого растворителя, а затем сушат на фильтровальной бумаге в вытяжном шкафу в течение 2-3 часов до исчезновения запаха растворителя. Высушенный комплекс переводят в делительную воронку и разлагают 2-3 объёмами воды, нагретой до 60 - 80 °С.
После охлаждения содержимого делительной воронки до 30-35 °С нормальные метановые углеводороды извлекают петролейным эфиром.
Выход парафина находят по формуле
где п - выход парафина в г,
а - навеска нефтепродукта в г.
Контрольные вопросы
1. Условия проведения процесса образования комплекса с карбамидом.
2. Роль растворителя в процессе образования комплекса. Предъявляемые к нему требования.
3. Соотношения исследуемой фракции с карбамидом.
Литература
1. Дияров И.Н., Батуева И.Ю., Садыков А.Н., Солодова Н. Л. Химия нефти, Руководство к лабораторным занятиям: учебное пособие для ВУЗов., Л., Химия, 1990.
2. Смидович Е. В., Лукашевич И.П. Практикум по технологии переработки нефти, М, Химия, 1978.
Лабораторная работа №10 Тема: Адсорбционная очистка масляных дистиллятов
Адсорбционную очистку масляных фракций применяют для получения высококачественных масел различного уровня вязкости, деароматизированных жидких парафинов и других продуктов различного назначения. В основе процесса лежит разделение высококипящих нефтепродуктов за счет различной адсорбируемости их компонентов на поверхности адсорбента.
Адсорбционное разделения различных веществ на практике осуществляют силикагелями, алюмосиликатами, активными углями, активной окисью алюминия, цеолитами, природными глинистыми породами. При этом к адсорбентам предъявляются следующие требования: высокие селективность разделения и адсорбционная емкость; хорошие кинетические характеристики, особенно в жидкофазных процессах, где коэффициенты диффузии в 103 меньше, чем в газах; отсутствие каталитической активности к компонентам разделяемой смеси.
Селективность адсорбции возникает часто за счет специфического взаимодействия молекул и поверхности адсорбента через электронно-донорное звено функциональной группы молекулы (π-связь) и выдвинутый положительный заряд (протонизированный водород гидроксильной группы, обменный катион и др.) поверхности. Так на поверхности силикагеля основными центрами специфической молекулярной адсорбции молекул с локально сосредоточенной электронной плотностью являются свободные гидроксильные группы. Поэтому же, являясь кислотой протонного типа (электрон-акцептором), по кислотно-основному механизму специфического взаимодействия силикагель образует на своей поверхности π -комплексы с основанием (электродонором) и селективнее адсорбирует соединения с функциональными группами из смеси с н-алканами, у которых проявляется только неспецифическое взаимодействие с поверхностью силикагеля. Поверхность углеводородных адсорбентов (сажа, активированные угли) не является носителем кислотных центров, не вступает в специфическое взаимодействие с адсорбированными молекулами углеводородов.
Наибольший вклад специфического взаимодействия при адсорбции у цеолитов в силу особенностей их структуры, поверхность активной окиси алюминия, насыщенная сильными апротонными кислотными центрами, также специфически взаимодействует с молекулами, имеющими π -связь.
Адсорбционная емкость зависит от величины обшей поверхности адсорбента и объема его пор и характеризуется удельной поверхностью и удельным объемом пор.
Кинетические характеристики. Процесс жидкофазной адсорбции на пористых твердых телах складывается из следующих стадий: подвода вещества к внешней поверхности адсорбента, диффузии молекул по транспортным порам, процесса адсорбции на поверхности адсорбента.
Первая стадия определяется внешнедиффузионными факторами и не представляет интереса с точки зрения влияния природы адсорбента на адсорбцию, на вторую – оказывает влияние размер транспортных пор. Третья стадия зависит от адсорбционной емкости и селективности абсорбента. Кинетические характеристики жидкофазной адсорбции определяются внутренней диффузией молекул компонентов раствора, зависящей от величины среднего радиуса транспортных пор. Для различных марок силикагелей, активированных углей, активной окиси алюминия и природных глин средний радиус пор находится в пределах 1-7; 0,7-1,7; 6-10; 0,28-10 нм. При уменьшении среднего радиуса пор силикагеля диффузия молекул ароматических углеводородов в порах уменьшается. Регулировать и улучшать свойства адсорбентов можно варьированием их пористой структуры или изменением химической природы поверхности, за счет чего достигается избирательность адсорбции. При очистке нефтепродуктов с помощью адсорбентов имеет место физическая адсорбция, при которой сорбаты могут быть выделены при десорбции. В первую очередь адсорбируются полярные соединения, затем неполярные вещества, в молекулах которых под действием силового поля молекул адсорбента возникают индуцированные диполи, и далее – неполярные вещества, адсорбируемость которых определяется дисперсионным взаимодействием молекул адсорбента и адсорбируемого вещества. На этом основана адсорбционная очистка масляного сырья, призванная удалить из него значительные количества смол и полициклических ароматических углеводородов, ухудшающих эксплутационные свойства масел и их восприимчивость к композициям присадок.
Аппаратура и материалы
1. Лабораторная установка для адсорбционной очистки сырья и отгона растворителя (рисунок).
2. Образец: дистиллята.
3. Растворитель - бензин.
4. Силикат марки АСК, высушенный при 180°С в течение пяти часов.