- •Новгородский агротехнический техникум
- •Материаловедение
- •110809 «Механизация сельского хозяйства»
- •190631 «Техническое обслуживание и ремонт
- •Введение
- •1 Производство черных и цветных металлов
- •Производство чугуна
- •Доменной печи
- •1.1.4 Продукты доменного производства.
- •1.2 Производство стали
- •1.2.4 Производство стали в электропечах.
- •1.3 Производство цветных металлов
- •1.3.3 Производство титана.
- •2 Физико-химические основы материаловедения
- •2.1 Строение и свойства материалов
- •2.1.3 Строение кристаллов и аллотропические превращения в металлах.
- •Процессе для чистого железа
- •2.2 Методы определения различных показателей и свойств материалов
- •2.3 Основы теории сплавов
- •2.4 Термическая обработка металлов и сплавов
- •2.4.2 Превращения в металлах при нагревании и охлаждении.
- •2.4.3 Отжиг.
- •2.4.4 Нормализация.
- •2.4.5 Закалка и отпуск стали.
- •2.5 Химико-термическая обработка металлов и сплавов
- •2.5.2 Поверхностная закалка.
- •2.5.3 Химико-термическая обработка стали.
- •2.5.4 Упрочнение поверхностным деформированием.
- •3 Материалы, применяемые в машиностроении
- •3.1 Углеродистые стали
- •3.1.1 Общие сведения.
- •3.1.2 Влияние содержания углерода и постоянных примесей на свойства углеродистых сталей.
- •3.1.3 Углеродистая конструкционная сталь.
- •3.2 Чугуны
- •И форме графитовых включений
- •3.2.3 Белый чугун.
- •3.2.4 Серый чугун.
- •3.2.5 Ковкий чугун.
- •3.2.6 Высокопрочный чугун.
- •3.2.7 Антифрикционные чугуны.
- •3.3 Легированные стали
- •3.3.2 Конструкционные легированные стали.
- •3.3.3 Инструментальные легированные стали.
- •3.3.4 Стали и сплавы с особыми свойствами.
- •3.4 Цветные металлы и сплавы
- •3.4.1 Медь
- •3.4.2 Сплавы на медной основе
- •3.4.5 Титан и его сплавы
- •3.4.6 Магний и его сплавы
- •3.5 Порошковые материалы
- •3.5.1 Материалы порошковой металлургии
- •3.5.2 Пористые порошковые материалы
- •3.5.3 Прочие пористые изделия
- •3.5.4 Конструкционные порошковые материалы
- •3.5.5 Спеченные цветные металлы
- •Металлокерамических твердых сплавов
- •3.6 Композиционные материалы
- •3.6.1 Общие сведения.
- •3.7 Неметаллические материалы
- •3.7.1 Общие сведения о классификации неметаллических материалов
- •3.7.2 Пластические массы
- •3.8 Прочие материалы
- •3.9 Защитные материалы
- •3.9.3 Методы нанесения защитных покрытий.
- •3.9.5 Классификация и свойства лакокрасочных материалов.
- •3.9.7 Классификация и свойства клеевых материалов.
- •3.10 Коррозия металлов и способы её предотвращения
- •Литература
3.3.3 Инструментальные легированные стали.
Инструментальные стали предназначены для режущего, измерительного и для штампового инструмента (холодного и горячего деформирования).
Инструментальные стали делят на четыре типа:
пониженной прокаливаемости (преимущественно углеродистые);
повышенной прокаливаемости (легированные);
штамповые;
быстрорежущие.
Быстрорежущие стали:
Быстрорежущие стали – высоколегированные инструментальные стали, обла-дающие красностойкостью (не теряют твердости при нагревании до температуры 600–640°С). Режимы обработки инструментом из этой стали в 3–4 раза выше допустимых значений для углеродистых и низколегированных сталей.
Основными легирующими химическими элементами, обеспечивающими теплостойкость быстрорежущих сталей, являются вольфрам, молибден, ванадий и кобальт.
ГОСТ 19265–73 устанавливает следующие марки быстрорежущих сталей: Р18; Р12; Р9; Р6МЗ; Р9Ф5; Р5М5; Р6М5К5; Р9М4К8; Р14Ф4; Р9К5; Р9К10; Р10К5Ф5; Р18Ф2; Р18К5Ф2.
Штамповые стали:
Для обработки металлов давлением применяют такие инструменты, как штампы, пуансоны, ролики, валики, деформирующие металл. Стали, применяемые для изготовления инструмента такого рода, называют штамповыми сталями (по наиболее распространенному инструменту).
Штамповые стали делятся на две группы: деформирующие металл в холодном состоянии и деформирующие металл в горячем состоянии, так как условия работы стали при различных видах штамповки значительно отличаются друг от друга.
Марки штамповых сталей для холодной штамповки: 4ХС; 6ХС; 5ХВ2С; Х12; Х12Ф1; Х6ВФ.
Марки штамповых сталей для горячей штамповки: 302ХВЭФ; 4Х5В2ФС и др.
3.3.4 Стали и сплавы с особыми свойствами.
В эту группу входят автоматные, пружинные, шарикоподшипниковые, коррозионностойкие, теплоустойчивые, жаропрочные, электротехнические и другие стали и сплавы.
Автоматные стали.
Для улучшения обрабатываемости резанием применяют углеродистые стали с повышенным содержанием серы (0,08–0,3%) и фосфора (0,06%). В этих сталях сера находится в виде сульфидов марганца, вытянутых вдоль направления прокатки, которые способствуют образованию короткой и ломкой стружки. При повышенном
содержании серы уменьшается трение между стружкой и инструментом из-за смазывающего действия сульфида марганца. Фосфор, повышая твердость, прочность и порог хладноломкости, способствует образованию ломкой стружки и получению гладкой блестящей поверхности при резании.
Улучшение обрабатываемости стали достигается и микролегированием такими химическими элементами, как РЬ, Са, Sе и Те, которые образуют в структуре металлические и неметаллические включения. Эти включения работают в очаге
резания как смазочный материал в виде тончайшего слоя, препятствующего схватыванию материала инструмента с материалом обрабатываемой детали, вследствие чего стружка легче отделяется. Легирование стали свинцом (0,15– 0,3% ) повышает скорость резания на 20–35%, а при сохранении постоянной скорости резания увеличивает стойкость инструмента в 2–7 раз.
Автоматные легированные стали делятся:
на сернисто-марганцовистые свинецсодержащие: АС 14; АС35Г2; АС45Г2;
легированные никелем свинецсодержащие: АС12ХН; АС14ХН;
легированные никелем и молибденом свинецсодержащие АС19ХГН; АС20ХГНМ; АСЗОХМ; АС38ХГМ; АС40ХГНМ.
Пружинные стали общего назначения
Пружины, рессоры и другие упругие детали испытывают упругую деформацию. В то же время многие из них испытывают циклические нагрузки. Поэтому основные требования к пружинным сталям – обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению.
Стали, используемые для пружин и рессор, содержат 0,5–0,75%С. Их дополнительно легируют кремнием (до 2,8% ), марганцем (до 1,2%), хромом (до 1,2%), ванадием (до 0,25%), вольфрамом (до 1,2%) и никелем (до 1,7%), при этом происходит измельчение зерна, способствующее возрастанию сопротивления стали малым пластическим деформациям, а следовательно стойкости против ослабления.
Пружины и другие элементы специального назначения изготовляют из высокохромистых сталей и сплавов: 30X13; 03Х12Н10Д2Т; 12Х18Н10Т; 09X15Н8Ю.
Шарикоподшипниковые стали.
Основной причиной выхода из строя подшипников качения является контактная усталость металла, проявляющаяся в выкрашивании частиц и отслаивании тонких пластин с рабочих поверхностей деталей (шелушение).
Для обеспечения работоспособности изделий шарикоподшипниковая сталь должна обладать высокой твердостью, прочностью и контактной выносливостью. Это достигается повышением качества металла – его очисткой от неметаллических
включений и уменьшением пористости посредством использования электрошлакового или вакуумно-дугового переплава.
При изготовлении деталей подшипника широко используют шарикопод-шипниковые (Ш) хромистые (X) стали ШХ15 и ШХ15СГ (число 15 указывает содержание хрома в десятых долях процента). Эти стали содержат по 1 %С. Сталь ШХ15СГ дополнительно легирована кремнием (0,5%) и марганцем (1,05% ) для повышения прокаливаемости.
Отжиг стали на твердость порядка 190НВ обеспечивает обрабатываемость полуфабрикатов резанием и штампуемость деталей в холодном состоянии.
Закалка деталей подшипника (шариков, роликов и колец) осуществляется в масле при температуре 840– 860°С. Перед отпуском детали охлаждают до 20–25°С для обеспечения стабильности их работы (путем уменьшения количества остаточного аустенита). Отпуск стали проводят при температуре 150–170°С в течение 1–2ч. Оптимальные условия обеспечения работоспособности изделий достигаются в том случае, если шарики имеют несколько большую твердость (62– 66НRС) по сравнению с роликами и кольцами (61– 65НRС для стали ШХ15).
Коррозионностойкие (нержавеющие) стали.
Стали, устойчивые к электрохимической и химической коррозии, называют коррозионностойкими (нержавеющими). Устойчивость стали против коррозии достигается введением в нее химических элементов, образующих на поверхности плотные, прочно связанные с основой защитные пленки, препятствующие непосредственному контакту стали с агрессивной средой, а также повышающие ее электрохимический потенциал в данной среде.
К таким сталям относятся: хромистые и хромоникелевые стали, содержащие от 13 до 27% хрома и от 3 до 10% никеля.
Электротехнические стали и сплавы.
В эту группу входят стали, применяемые для изготовления трансформаторов, сердечников и полюсов электромагнитов и реле, статоров и роторов электродвигателей. Они имеют высокую магнитную проницаемость, это стали ферритной группы с содержанием кремния и алюминия до 5%, с высоким удельным сопротивлением.
Контрольные вопросы:
Назовите основные легирующие элементы для сталей.
По каким признакам классифицируют легированные стали?
Какие группы легированных конструкционных сталей вам известны?
Какими буквами обозначают в маркировке сталей легирующие элементы, приведите примеры?
Где применяют быстрорежущие стали?
Для чего предназначены штамповые тали?
Назовите область применения жаростойких и жаропрочных сталей.
Что изготавливают из шарикоподшипниковых сталей?
Почему коррозионностойкие стали называют нержавеющими?
В чем особенность электротехнических сталей?
