
- •Л. Нарцисс краткий курс пивоварения Предисловие к седьмому изданию
- •Предисловие к шестому изданию
- •Содержание
- •1. Технология солодоращения
- •1.1. Пивоваренный ячмень
- •1.1.1. Строение зерна ячменя
- •1.1.2. Химический состав зерна ячменя
- •1.1.3. Свойства ячменя и их оценка
- •1.2. Подготовка ячменя к солодоращению
- •1.2.1. Приемка ячменя
- •1.2.2. Транспортное оборудование
- •1.2.3. Очистка и сортирование ячменя
- •1.2.4. Хранение ячменя
- •1.2.5. Дополнительное подсушивание ячменя
- •1.2.6. Вредители ячменя
- •1.2.7. Изменение массы ячменя во время хранения
- •1.3. Замачивание ячменя
- •1.3.1. Поглощение воды зерном ячменя
- •1.3.2. Снабжение зерна кислородом
- •1.3.3. Очистка ячменя
- •1.3.4. Потребление воды
- •1.3.5. Аппараты для замачивания
- •1.3.6. Способы замачивания
- •1.4. Проращивание
- •1.4.1. Теория проращивания
- •1.4.2. Практические аспекты проращивания
- •1.5. Различные системы солодоращения
- •1.5.1. Токовая солодовня
- •1.5.2. Пневматическая солодовня
- •1.5.3. Оборудование для проращивания в пневматических солодовнях
- •1.5.4. Готовый свежепроросший солод
- •1.6. Сушка свежепроросшего солода
- •1.6.1. Общие положения
- •1.6.2. Сушилки
- •1.6.3. Процесс сушки
- •1.6.4. Контроль и автоматизация сушильных работ - обслуживание сушилок
- •1.6.5. Экономия тепла и энергии
- •1.6.6. Вспомогательные работы при сушке
- •1.6.7. Обработка солода после сушки
- •1.6.8. Складирование и хранение сухого солода
- •1.7. Потери при солодоращении
- •1.7.1. Потери при замачивании
- •1.7.2. Потери на дыхание и проращивание
- •1.7.3. Определение потерь при солодоращении
- •1.8. Свойства солода
- •1.8.1. Внешние признаки
- •1.8.2. Механический анализ
- •1.8.3. Технохимический анализ
- •1.9. Другие типы солода
- •1.9.1. Пшеничный солод
- •1.9.2. Солод из других зерновых культур
- •1.9.3. Специальные типы солода
- •2. Технология приготовления сусла
- •2.0. Общие вопросы
- •2.1. Пивоваренное сырье
- •2.1.1. Солод
- •2.1.2. Несоложеные материалы
- •2.1.3. Вода
- •2.1.4. Хмель
- •2.2. Дробление солода
- •2.2.1. Оценка помола
- •2.2.2. Солодовые дробилки
- •2.2.3.Свойства и состав помола
- •2.3. Затирание
- •2.3.1. Теория затирания
- •2.3.2. Практика затирания
- •2.3.3. Способы затирания
- •2.3.4. Некоторые проблемы при затирании
- •2.3.5. Контроль процесса затирания
- •2.4. Получение сусла. Фильтрование
- •2.4.1. Фильтрование с помощью фильтр-чана
- •2.4.2. Фильтр-чан
- •2.4.3. Процесс фильтрования в фильтр-чане
- •2.4.4. Фильтрование с помощью традиционного фильтр-пресса
- •2.4.5. Заторный фильтр-пресс (майш-фильтр)
- •2.4.6. Процесс фильтрования в фильтр-прессе (майш-фильтре)
- •2.4.7. Фильтр-пресс нового поколения
- •2.4.8. Фильтрование на новых заторных фильтр-прессах
- •2.4.9. Стрейнмастер
- •2.4.10. Непрерывные методы фильтрования
- •2.4.11. Сборник первого сусла
- •2.5.Кипячение и охмеление сусла
- •2.5.1. Сусловарочный котел
- •2.5.2. Испарение избыточной воды
- •2.5.3. Коагуляция белка
- •2.5.4. Охмеление сусла
- •2.5.5. Содержание ароматических веществ в сусле
- •2.5.6. Потребление энергии при кипячении сусла
- •2.5.7. Спуск сусла
- •2.5.8. Горячее охмеленное сусло
- •2.5.9. Дробина
- •2.5.10. Техника безопасности и управление процессом варки
- •2.6. Выход экстракта в варочном цехе
- •2.6.1. Расчет производительности варочного цеха
- •2.6.2. Оценка выхода экстракта в варочном цехе
- •2.7. Охлаждение сусла и удаление осадка взвесей горячего сусла
- •2.7.1. Охлаждение сусла
- •2.7.2. Поглощение кислорода суслом
- •2.7.3. Удаление осадка взвесей
- •2.7.4. Прочие процессы
- •2.7.5. Оборудование холодильного отделения
- •2.7.6. Использование холодильной тарелки, оросительного или закрытого холодильников
- •2.7.7. Закрытые системы охлаждения сусла
- •2.8. Выход холодного сусла
- •2.8.1. Измеряемые показатели
- •2.8.2. Расчет выхода экстракта с холодным суслом
- •3. Технология брожения
- •3.1. Пивные дрожжи
- •3.1.1. Морфология дрожжей
- •3.1.2. Химический состав дрожжей
- •3.1.3. Ферменты дрожжей
- •3.1.4. Размножение дрожжей
- •3.1.5. Генетика дрожжей
- •3.1.6. Генетическая модификация дрожжей
- •3.1.7. Автолиз дрожжей
- •3.2. Метаболизм дрожжей
- •3.2.1. Метаболизм углеводов
- •3.2.2. Метаболизм азотистых веществ
- •3.2.3. Метаболизм жиров
- •3.2.4. Метаболизм минеральных веществ
- •3.2.5. Ростовые вещества (витамины)
- •3.2.6. Продукты метаболизма и их влияние на качество пива
- •3.3. Дрожжи низового брожения
- •3.3.1. Выбор др ожж ей
- •3.3.2. Разведение чистой культуры пивных дрожжей
- •3.3.3. Дегенерация дрожжей
- •3.3.4 . Снятие дрожжей
- •3.3.5. Очистка дрожжей
- •3.3.6. Хранение дрожжей
- •3.3.7. Отгрузка дрожжей
- •3.3.8. Определение жизнеспособности дрожжей
- •3.4. Низовое брожение
- •3.4.1. Бродильные отделения
- •3.4.2. Бродильные чаны
- •3.4.3. Внесение дрожжей в сусло при главном брожении
- •3.4.4. Проведение брожения
- •3.4.5. Ход главного брожения
- •3.4.6. Степень сбраживания
- •3.4.7. Перекачка пива из бродильного отделения
- •3.4.8. Изменения в сусле в ходе брожения
- •3.4.9. Образование co2
- •3.5. Дображивание и созревание пива
- •3.5.1. Отделение дображивания (лагерное)
- •3.5.2. Емкости для дображивания (лагерные танки)
- •3.5.3. Дображивание
- •3.6. Современные способы брожения и дображивания
- •3.6.1. Традиционный принцип работы бродильных танков и крупных емкостей
- •3.6.2. Применение буферных танков и центрифуг
- •3.6.3. Методы ускоренного брожения и созревания пива
- •3.6.4. Непрерывные способы брожения
- •4. Фильтрование пива
- •4.1. Теоретические основы фильтрования
- •4.2. Способы фильтрования
- •4.2.1. Масс-фильтр
- •4.2.2. Кизельгур
- •4.2.3. Пластинчатый фильтр-пресс
- •4.2.4. Мембранное фильтрование
- •4.2.5. Центрифуги
- •4.3. Комбинированные способы осветления
- •4.4. Способы замены кизельгурового фильтрования
- •4.5. Вспомогательное оборудование и контрольно-измерительная аппаратура
- •4.5.1. Вспомогательное оборудование
- •4.5.2. Контрольно-измерительная аппаратура
- •4.6. Начало и окончание фильтрования
- •4.7. Дрожжевой осадок
- •4.8. Сжатый воздух
- •5. Розлив пива
- •5.1.Хранение фильтрованного пива
- •5.2. Розлив в бочки и кеги
- •5.2.1. Бочки и кеги
- •5.2.2. Мойка бочек
- •5.2.3. Розлив в бочки
- •5.2.4. Инновации в традиционном розливе пива в бочки
- •5.2.5. Розлив в кеги
- •5.2.6. Цех розлива в кеги
- •5.3. Розлив в бутылки и банки
- •5.3.1. Тара
- •5.3.2. Мойка бутылок
- •5.3.3. Розлив в бутылки
- •5.3.4. Мойка и дезинфекция установок розлива
- •5.3.5. Укупорка бутылок
- •5.3.6. Поглощение кислорода в процессе розлива
- •5.4. Стерильный розлив и пастеризация пива
- •5.4.1. Стерильный розлив
- •5.4.2. Пастеризация пива
- •5.5. Цех розлива в бутылки
- •6. Потери сусла и пива
- •6.1. Деление общих потерь
- •6.1.1. Потери сусла
- •6.1.2. Потери пива
- •6.2. Оценка потерь
- •6.2.1. Расчет потерь по жидкой фазе
- •6.2.2. Перерасчет потерь
- •6.2.3. Расчет выработанного сусла и пива на 100 кг солода
- •6.2.4. Расчет потерь по экстракту горячего охмеленного сусла и засыпи солода
- •6.2.5. Использование остаточного и некондиционного пива
- •7. Готовое пиво
- •7.1. Состав пива
- •7.1.1. Экстрактивные вещества пива
- •7.1.2. Летучие соединения
- •7.2. Классификация пива
- •7.3. Свойства пива
- •7.3.1. Общие свойства
- •7.3.2. Окислительно-восстановительный потенциал
- •7.3.3. Цветность пива
- •7.4. Вкус пива
- •7.4.1. Вкусовые отличия
- •7.4.2. Факторы, влияющие на вкус пива
- •7.4.3. Дефекты вкуса пива
- •7.5. Пена пива
- •7.5.1. Теория пенообразования
- •7.5.2. Технологические факторы
- •7.6. Физико-химическая стойкость и ее стабилизация
- •7.6.1. Состав коллоидных помутнений
- •7.6.2. Образование коллоидного помутнения
- •7.6.3. Технологические способы повышения коллоидной стойкости пива
- •7.6.4. Стабилизация пива
- •7.6.5. Стабильность вкуса пива
- •7.6.6. Химическое помутнение
- •7.6.7. Фонтанирование пива (гашинг-эффект)
- •7.7. Фильтруемость пива
- •7.7.1. Причины плохой фильтруемости пива
- •7.7.2. Профилактические меры
- •7.8. Биологическая стойкость пива
- •7.8.1. Причины контаминации
- •7.8.2. Обеспечение биологической стойкости пива
- •7.9. Физиологическое действие пива
- •7.9.1. Пищевая ценность пива
- •7.9.2. Диетические свойства пива
- •7.10. Специальные типы пива
- •7.10.1. Слабоалкогольное пиво
- •7.10.2. Диетическое пиво
- •7.10.3. Безалкогольное пиво
- •7.10.4. Способы ограничения содержания спирта
- •7.10.5. Физические методы удаления спирта
- •7.10.6. Сочетание различных способов приготовления безалкогольного пива
- •7.10.7. Легкое пиво
- •8. Верховое брожение
- •8.1. Общие вопросы
- •8.2. Верховые дрожжи
- •8.2.1. Морфологические признаки
- •8.2.2. Физиологические различия
- •8.2.3. Технологические особенности брожения
- •8.2.4. Обработка дрожжей
- •8.3. Ведение верхового брожения
- •8.3.1. Бродильный цех и бродильные емкости
- •8.3.2. Свойства сусла
- •8.3.3. Внесение дрожжей
- •8.3.4. Ход главного брожения
- •8.3.5. Изменения в сусле при верховом брожении
- •8.3.6. Дображивание
- •8.3.7. Фильтрование и розлив
- •8.4. Различные типы пива верхового брожения
- •8.4.1. Пиво типа Alt (регион Дюссельдорфа, Нижнего Рейна)
- •8.4.2. Пиво типа Кёльш
- •8.4.3. Пшеничное бездрожжевое пиво
- •8.4.4. Пшеничное дрожжевое пиво
- •8.4.5. Пиво типа Berliner Weißbier
- •8.4.6. Сладкое солодовое пиво
- •8.4.7. Верховое «диетическое» пиво по баварской технологии
- •8.4.8. Безалкогольное пиво верхового брожения
- •8.4.9. «Лёгкое» пиво верхового брожения
- •9. Высокоплотное пивоварение
- •9.1. Получение высокоплотного сусла
- •9.1.1. Фильтрование
- •9.1.2. Затирание
- •9.1.3. Кипячение сусла
- •9.1.4. Применение вирпула
- •9.1.5. Разбавление плотного сусла при его охлаждении
- •9.2. Брожение высокоплотного сусла
- •9.3. Разбавление пива
- •9.4. Свойства пива
- •10. Дополнения по данным новейших исследований
- •10.1. К главе 1: Технология производства солода
- •10.1.1. К разделу 1.3.1. Поглощение воды зерном ячменя
- •10.1.2. К разделу 1.4.1. Теория проращивания
- •10.1.3. К разделу 1.6. Сушка свежепроросшего солода
- •10.1.4. К разделу 1.6.3. Влияние способов подсушивания и сушки на стабильность вкуса (см. Также раздел 7.6.5.5)
- •10.1.5. К разделу 1.6.8. Складирование и хранение сухого солода
- •10.1.6. К разделу 1.8.2. Механический анализ
- •10.1.7. К разделу 1.8.3. Технохимический анализ
- •10.1.8. К разделу 1.9.1. Пшеничный солод
- •10.1.9. К разделу 1.9.2. Солод из других зерновых культур
- •10.1.10. К разделу 1.9.3. Специальные типы солода
- •10.2. К главе 2. Технология приготовления сусла
- •10.2.1. К разделу 2.1.3. Вода
- •10.2.2. К разделу 2.1.4. Хмель
- •10.2.3. К разделу 2.2.2. Солодовые дробилки
- •10.2.4. К разделу 2.3.1. Теория затирания
- •10.2.5. К разделу 2.3.3. Способы затирания
- •10.2.6. К разделам 2.4.2. Фильтр-чан и 2.4.3. Процесс фильтрования в фильтр-чане
- •10.2.7. К разделу 2.4.7.Фильтр-пресс нового поколения
- •10.3. К разделу 2.5. Кипячение и охмеление сусла
- •10.3.1. К разделам 2.5.6 и 2.7.7. Предварительное охлаждение сусла между котлом и вирпулом до 85-90 °c
- •10.3.2. К разделам 2.5.1, 2.5.5-2.5.6, 2.7.4, 2.7.7. Тонкоплёночный выпарной аппарат с дополнительным выпариванием после вирпула
- •10.3.3. К разделу 2.5.6. Потребление энергии при кипячении сусла
- •10.3.4. К разделу 2.7.4. Прочие процессы (изменения свойств сусла между окончанием кипячения сусла и окончанием охлаждения)
- •10.3.5. К разделу 2.7.7. Закрытые системы охлаждения сусла
- •10.3.6. К разделу 2.8.2. Расчёт выхода экстракта с холодным суслом
- •10.4. К главе 3: Технология брожения
- •10.4.1. К разделу 3.4.3. Внесение дрожжей в сусло при главном брожении
- •10.4.2. К разделу 3.3.2. Разведение чистой культуры пивных дрожжей
- •10.4.3. К разделу 3.3.6. Хранение дрожжей
- •10.4.4. К разделу 3.3.8. Определение жизнеспособности дрожжей
- •10.5. К главе 4: Фильтрование пива
- •10.5.1. К разделу 4.2.2. Кизельгур
- •10.5.2. К разделу 4.3. Комбинированные способы осветления
- •10.5.3. К разделу 4.4. Способы замены кизельгурового фильтрования
- •10.6. К главе 5: Розлив пива
- •10.6.1. К разделу 5.2. Розлив в бочки и кеги
- •10.6.2. К разделу 5.3. Розлив в бутылки и банки
- •10.6.3. К разделу 5.3.3. Розлив в бутылки
- •10.7. К главе 7: Готовое пиво
- •10.7.1. К разделу 7.5.2. Технологические факторы пенообразования
- •10.7.2. К разделу 7.6.4. Стабилизация пива
- •10.7.3. К разделу 7.6.7. Фонтанирование пива (гашинг-эффект)
- •10.7.4. К разделу 7.7. Фильтруемость пива
- •10.7.5. К разделу 7.8. Биологическая стойкость пива
- •10.7.6. К разделу 7.9. Физиологическое действие пива
7.6.5. Стабильность вкуса пива
Под стабильностью вкуса понимают способность пива вплоть до его употребления сохранять (по возможности без изменений) первоначальный вкус, присущий пиву сразу же после розлива.
Изменения вкуса пива в ходе его хранения м о ж н о разделить на две большие группы: с одной стороны - изменение полноты вкуса, игристости и горечи, ухудшение исходной гармоничности вкуса, а с другой - изменение аромата пива, появление «вкуса старения» или «засвеченного» привкуса.
Эти изменения протекают не одновременно: если явления из первой группы проявляются довольно рано, например, после транспортировки пива или при неблагоприятных условиях хранения, то последние зависят от свойств пива и степени его контаминации и могут проявиться через несколько недель или даже месяцев.
Изменение гармоничности вкуса пива обусловлено степенью гидратации коллоидов пива под воздействием явлений, вызывающих их «старение» (см. раздел 7.6.1). Транспортировка, колебания температуры и окисление обусловливают снижение полноты вкуса и появление резкой или размытой горечи (белковой). Чем меньше коллоидная стойкость пива, тем ниже стабильность вкуса пива.
Изменение горечи пива вызывается не только коллоидами: во время хранения снижается содержание в пиве изогумулонов, и горечь пива в результате окисления полифенолов или хмелевых масел может приобретать резкий или размытый характер.
Появление вкуса старения происходит в несколько этапов: сначала появляется оттенок, напоминающий аромат черной смородины. Затем появляется картонный привкус, переходящий в хлебный аромат и вкус. При этом игристость пива снижается, а горечь становится все более размытой. Очень старое пиво характеризуется шерриподобным ароматом. При старении пива происходит рост содержания многих летучих соединений, в частности высокомолекулярных, отчасти ненасыщенных карбонильных соединений. Некоторые специалисты считают основной причиной образования вкуса старения именно их.
Эти соединения возникают в результате действия следующих механизмов.
Расщепление аминокислот по Штрекеру, вследствие чего образуются карбонильные соединения с недостающим атомом углерода. В темноте они катализируются следами ионов металлов, но на свету расщепление протекает быстрее и стимулируется рибофлавином, полифенолами и спиртами.
Окислительное расщепление изогумулонов, преимущественно С4-С7-ал-кеналей и С6-С7-алкадиеналей, которое стимулируется под действием света в присутствии рибофлавина.
Окисление спиртов меланоидинами, которому способствуют свет и наличие рибофлавина, но сдерживаемое полифенолами. Хотя высшие спирты продуцируют альдегиды, важные для формирования вкуса, вместе с тем в ходе преобразования этанола в ацетальдегид продуцируются предшественники (прекурсоры) других компонентов старения.
Самоокисление высокомолекулярных жирных кислот выражается в образовании преимущественно низкомолекулярных альдегидов (C5, C6); стимулируется оно воздействием света, а рибофлавин в этом случае играет роль ингибитора.
Ферментативное окисление высокомолекулярных жирных кислот (линолевой и линоленовой) до гидроксикислот и их расщепление до высокомолекулярных ненасыщенных альдегидов протекает на свету и в темноте примерно с одинаковой скоростью. Основные реакции проходят уже в ходе солодоращения (см. раздел 1.4.1.5), однако оксидазные системы (пероксидаза, липогексиназа) еще активны и при затирании.
Катализация пролином альдольной конденсации низко- и высокомолекулярных альдегидов.
Окислительное расщепление карбонильных соединений вызывает расщепление высокомолекулярных ненасыщенных альдегидов до низкомолекулярных ненасыщенных, в связи с чем меняется их содержание (увеличение или снижение) в ходе хранения пива.
Таким образом, эти изменения происходят вследствие различных реакций компонентов пива, причем повышение концентрации меланоидина способствует как расщеплению аминокислот по Штрекеру, так и окислению спиртов, а полифенолы содействуют расщеплению аминокислот по Штрекеру, но ингибируют расщепление спиртов, катализируемое действием света, и т. д.
В ходе оценки разных видов пива было показано заметное увеличение содержания целого ряда соединений, в том числе 2-метил-пропаналя, 2-метил-бута-наля, 3-метил-бутаналя, бензальдегида, фенилацетальдегида, 3-метил-бутан-2-она, 2-фурфураля, 1-гептаналя, γ-ноналакто-на, сложного эфира никотиновой кислоты, 2-ацетил-фурана, 2-пропиоиил-фурана и 2-ацетил-5-фурана. При этом по «факторам старения» - окислению пива, термической нагрузке и старению в целом - их можно классифицировать следующим образом.
индикаторы кислорода: 3-метил-бута-наль, 2-метил-бутаналь, бензальдегид, фенилэтаналь;
индикаторы термической нагрузки: 2-фурфураль, сложный эфир никотиновой кислоты, γ-ноналактон;
индикаторы старения: все вышеперечисленные соединения, а также 3-метил-бутан-2-он, 2-ацетил-фуран, 2-про-пионил-фуран.
Окисление в процессе приготовления сусла вызывает увеличение содержания 2-пентанона, 2- и 3-метил-бутаналя, 2-ген-танона, 2-фурфураля и гептаналя.
Засвеченный привкус пива наблюдается главным образом у бутылочного пива, но под действием света проявляется иногда и в пиве после розлива. У бутылочного пива прозрачные, зеленые или светло-коричневые стеклянные бутылки (см. раздел 5.3.1.1) не полностью поглощают свет с длиной волны 350-500 нм. Технологическими мерами повлиять на реакции важнейших компонентов пива (см. раздел 7.4.3.1) практически невозможно. Несколько приостановить образование «засвеченного» привкуса помогает применение восстановленных хмелевых экстрактов, включающих тетраоксиизогумулон.
Технологические факторы вкусовой стабильности пива. Поскольку основной причиной изменения вкуса является поглощение кислорода после брожения и на участке розлива, следует учитывать следующие моменты: при перекачке созревшего пива в танки для холодного хранения в них следует создавать избыточное давление CO2; опорожнение танков и все процессы фильтрования и розлива можно производить только в атмосфере CO2 (см. раздел 5.3.6.5). Применение азота в качестве инертного газа при розливе менее благоприятно, чем CO2. Показатель общего содержания кислорода (растворенного в пиве и содержащегося в пространстве горлышка бутылки) при современных требованиях к стойкости пива при хранении не должен превышать 0,30 мг/кг.
Во избежание слишком сильной нагрузки пива по азоту солод подбирают как по содержанию белка (не более 10,5 % ) , так и по степени его растворения (39-41 %). Чтобы иметь возможность применить слабый способ затирания (при температуре свыше 60 °С) без каких-либо проблем для последующего производственного процесса, необходимо обеспечить высокую гомогенность затора. Благодаря этому, а также путем оптимального ведения брожения при хорошей ассимиляции азота достигается низкое содержание в пиве аминного азота, что важно для ингибирования образования альдегидов из их предшественников путем преобразования Штрекера или реакции Майяра. Приготовление сусла при ограниченном доступе воздуха стимулирует процессы расщепления при затирании и предотвращает окисление полифенолов, благодаря чему они сохраняют свои редуцирующие свойства в процессе пивоварения. Редуцирующая способность редуктонов зависит от степени биологического подкисления затора и до определенной степени компенсирует неконтролируемое поглощение кислорода при приготовлении сусла. Так как продукты реакции Майяра способствуют образованию карбонилов старения, то слишком сильная сушка солода нежелательна (опытным путем определено, что температуру сушки следует ограничить 82-83 °С). Кроме того, следует избегать чрезмерной термической нагрузки на сусло до и после кипячения. Системы кипячения, работающие в области повышенных температур, не вызывают негативных последствий только в том случае, если гарантируется равномерное и интенсивное испарение (чем помогает предотвращение образования «мертвых зон»). При выдержке горячего сусла еще продолжают образовываться достаточное количество карбонильных соединений, которые больше не испаряются и переводятся дрожжами в соответствующие спирты и эфиры не полностью. В результате рекомендуется избегать превышения общей продолжительность тепловой выдержки в конце кипячения и при охлаждении сусла в 110 мин. Рекомендуется всегда проводить биологическое подкисление сусла. Испарительный охладитель обусловливает интенсивное выпаривание ароматических веществ сусла и охлаждение в диапазоне температур около 80 °С, тогда как охладитель в трубопроводе для перекачивания готового сусла оказывает лишь охлаждающее действие, хотя он также довольно эффективен.
Пиво из сусла, испытавшего сильную термическую нагрузку, быстро утрачивает свой первоначальный характер. Следует также избегать «перепастеризации» независимо от того, обусловлена ли она слишком длительным пребыванием в установке для кратковременной высокотемпературной обработки или в туннельном пастеризаторе. Следует тщательно отслеживать ход смешивания с остаточным пивом, которое из соображений микробиологической безопасности неоднократно подвергалось термической обработке.
Образование карбонильных соединений из жирных кислот уже доказано: например, фильтрованное сусло, содержащее взвешенные частицы, характеризуется повышенным содержанием не только пальмитиновой кислоты (С16), но и ли-нолевой (C18:2) - частицы взвеси не полностью осаждались в процессе кипячения сусла, а при последующем его осветлении (например, в вирпуле) удалялись лишь частично. Быстрое старение пива наступает в результате достоверно подтвержденной концентрации карбонильных соединений.
Ферментативное расщепление липидов можно проследить по анализу гексаналя, но в настоящее время точные сведения о содержании и роли липогексиназ и пероксидаз пока отсутствуют. Высокие температуры затирания (60-65 °С) обеспечивают более благоприятные результаты, чем температуры порядка 45-60 °С. Хорошее осветление пива, затирание сусла которого проводилось при температуре около 35 °C, свидетельствует как о наличии последующих реакций, так и о возможности выпаривания образовавшихся промежуточных их продуктов.
Указанное выше благоприятное содержание полифенолов способствует усилению действия редуктонов, что можно проследить по содержанию танноидов. Благоприятно на него влияют использование ячменя, выросшего в приморском климате, однородное растворение солода, не слишком низкая степень сушки, применение мягкой пивоваренной воды, а также биологическое подкисление и затирание с ограниченным доступом воздуха. Кроме того, положительно влияет на содержание танноидов применение гранулированных хмелевых препаратов. Стабилизация пива с применением ПВПП ослабляет действие редуктонов, в связи с чем содержание кислорода в пиве должно оставаться низким.
Интенсивное аэрирование сусла компенсирует дефицит жирных кислот; очень важны также равномерное распределение дрожжей, быстрое сбраживание и хорошая абсорбция аминокислот. Большое значение имеет способность дрожжей связывать SO2 (благодаря дрожжевым смесям можно использовать пограничное значение - 10 мг/л).
В результате аэрации кислородом редуктоны теряют свои редуцирующие свойства, а выделение аминокислот после брожения, напротив, обеспечивает для вышеописанных процессов наличие участников реакций. В этой связи желательным представляется возможно более хорошее сбраживание, то есть присутствие очень незначительной доли сбраживаемых Сахаров. Пиво, приготовленное из несоложеного сырья, хотя и характеризуется пониженным содержанием низкомолекулярных азотсодержащих веществ, продуктов реакции Майяра и жирных кислот, при правильном приготовлении практически не отличается по характеристикам старения от пива из смешанных сортов солода.
Для выявления отклонений на отдельных этапах производственного процесса или оценки успешности принятых мер помимо вышеперечисленных аналитических показателей - ТБЧ, изменение цвета (см. раздел 7.3.3), состав полифенолов - полезно также знать содержание в пиве редуцирующих веществ (выявляемое, например, по спектрофотометрическому анализу обесцвечивания индикатора). См. также главу 10, раздел 10.7.3.