
- •Введение
- •1. Случайные события и вероятность
- •1.1. Пространство элементарных событий. Случайные события. Алгебра событий
- •1.2. Классическое определение вероятности. Статистическое определение вероятности
- •1.3. Элементы комбинаторики. Некоторые содержательные задачи
- •1.4. Аксиоматическое введение вероятности
- •1.5. Теоремы о вероятностях случайных событий
- •1.6. Формула полной вероятности и формула Байеса
- •1.7. Геометрические вероятности
- •1.8. Схема независимых испытаний Бернулли. Формула Бернулли. Формула Пуассона. Локальная и интегральная теоремы Муавра-Лапласа
- •Вопросы для самопроверки
- •2. Случайные величины
- •2.1. Случайные величины. Случайные величины дискретного типа. Ряд распределения. Функция распределения
- •2.2. Случайная величина непрерывного типа. Плотность вероятности распределения случайной величины
- •2.3. Числовые характеристики случайной величины. Математическое ожидание и дисперсия, их свойства
- •2.4. Пуассоновский поток событий
- •Вопросы для самопроверки
- •3. Системы случайных величин
- •3.1. Закон распределения системы двух случайных величин. Функция распределения, плотность распределения системы двух случайных величин
- •3.2. Условные законы распределения. Зависимые и независимые случайные величины
- •3.3. Числовые характеристики системы двух случайных величин. Корреляционный момент. Коэффициент корреляции
- •Вопросы для самопроверки
- •4. Функции случайных величин
- •4.1. Преобразование случайных величин (случай двух переменных)
- •4.2. Распределение суммы, разности, произведения и частного двух случайных величин
- •4.3. Преобразование случайных величин (случай одной переменной)
- •4.5. Распределение Стьюдента
- •Вопросы для самопроверки
- •5. Закон больших чисел
- •5.1. Неравенства Чебышева
- •5.2. Теорема Чебышева
- •5.3. Теорема Бернулли
- •5.4. Центральная предельная теорема
- •Вопросы для самопроверки
- •6. Случайные процессы. Марковские случайные процессы. Системы массового обслуживания
- •6.1. Случайные процессы
- •6.2. Марковские случайные процессы. Марковские цепи
- •6.3. Марковские процессы с дискретными состояниями и непрерывным временем. Уравнения Колмогорова
- •6.4. Процессы гибели и размножения
- •6.5. Потоки случайных событий
- •6.6. Приложения марковских процессов
- •6.7. Системы массового обслуживания
- •6.8. Системы массового обслуживания с отказами Одноканальная смо с отказами
- •6.9. Системы массового обслуживания с очередями
- •Вопросы для самопроверки
- •7. Математическая статистика
- •7.1. Генеральная совокупность и выборка. Статистический ряд. Статистическая функция распределения. Гистограмма
- •7.2. Точечные оценки параметров генеральной совокупности по выборочным совокупностям, их свойства. Точечные оценки для математического ожидания и дисперсии случайной величины
- •7.3. Интервальные оценки. Доверительный интервал. Нахождение доверительных интервалов для математического ожидания и дисперсии нормального распределения случайной величины
- •1. Доверительный интервал для оценки математического ожидания нормального распределения случайной величины с известным
- •2. Доверительный интервал для оценки математического ожидания нормального распределения с неизвестным
- •3. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •7.4. Построение прямых линий регрессии по выборочным данным
- •1. Нахождение параметров выборочных уравнений прямой линии регрессии по несгруппированным данным
- •2. Нахождение параметров выборочных уравнений прямой линии регрессии по сгруппированным данным
- •7.5. Нахождение оценки для коэффициента корреляции двух случайных величин
- •7.6. Статистическая проверка гипотез. Статистическая гипотеза. Нулевая и конкурирующая гипотеза. Статистический критерий. Критическая область
- •7.7. Проверка гипотезы о значимости выборочного коэффициента корреляции
- •7.8. Проверка гипотезы о распределении генеральной совокупности. Критерий 2 Пирсона
- •7.10. Сравнение генеральных средних двух нормально распределенных случайных величин (малые независимые выборки)
- •7.11. Сравнение двух дисперсий нормальных генеральных совокупностей
- •7.12. Сравнение наблюдаемой относительной частоты с гипотетической вероятностью наступления события
- •Вопросы для самопроверки
- •8. Варианты контрольной paбoты № 1 по теории вероятностей вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •9. Варианты контрольной работы № 2 по случайным процессам и математической статистике вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Приложение
- •Суммарные вероятности для распределения Пуассона
- •Критические точки распределения Стьюдента
- •Библиографический список
Вариант 6
Задача 1. Экология. Дирекция предприятия утверждает, что вероятность выноса в море в течение одного дня частицы ртути, обнаруженной в стоках этого предприятия, 0,9. Если же эта частица оказывается на месте по прошествии нескольких дней, то вероятность ее выноса к морю остается равной 0,9. Частицы, вынесенные в море, обратно не возвращаются. Считая процесс марковским, найти вероятность того, что частица ртути освобожденная в процессе производства, будет находиться в сточных водах еще неделю. Построить соответствующий ориентированный граф.
Задача 2. Сколько необходимо иметь мест на станции технического обслуживания автомобилей, чтобы с вероятностью, не меньшей 0,9, автомобиль, нуждающийся в ремонте, обеспечивался местом для ремонта, если считать поток заявок простейшим, а время обслуживания - подчиняющимся показательному закону? Среднее время ремонта – одни сутки. В течение суток на станцию поступают в среднем 5 автомобилей. Найти финальные вероятности и вероятность отказа.
Задача 3. Дано распределение месячной зарплаты рабочих
Месяч. зарплата |
10000 |
11000 |
12000 |
13000 |
14000 |
Число рабочих |
11 |
7 |
5 |
4 |
2 |
Вычислить выборочную среднюю, выборочную дисперсию, выборочное среднее квадратическое отклонение этой случайной величины.
Задача 4. Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью , зная выборочную среднюю , объем выборки n и среднее квадратическое отклонение : =78,13; n=100; =7; = 0,96.
Задача 5. С помощью критерия Пирсона на уровне значимости =0,01 проверить гипотезу о нормальном законе распределения генеральной совокупности Х, если известны ее эмпирические и теоретические частоты:
-
4
10
15
10
6
5
11
17
9
3
Задача 6. Методами корреляционного анализа исследовать зависимость между выпуском продукции X (тыс.шт.) и себестоимостью одного изделия Y (тыс.руб.) на основе следующих данных. Проверить гипотезу о значимости выборочного коэффициента корреляции при заданном уровне значимости =0,05. Построить линейные уравнения регрессии.
-
X
2
3
4
5
6
Y
1,9
1,7
1,8
1,6
1,4
Вариант 7
Задача 1. Водоснабжение. Снабжение водой города осуществляется из некоторого естественного резервуара. Наблюдения в течение многих лет показали, что если резервуар был полон в начале лета, то он оказывался полным к началу следующего лета с вероятностью 0,8 независимо от состояния его наполнения в предшествующие годы. Если же резервуар к началу лета был незаполненным, то вероятность того, что к началу следующего лета он окажется полным, равна лишь 0,4. Считая процесс марковским, найти вероятность того, что резервуар будет полон к началу лета 2005 года, если известно, что заполнение его наблюдалось в 2000 году. Построить соответствующий ориентированный граф.
Задача 2. В пункте приема химической чистки работают две приемщицы. В среднем за 48 часовую рабочую неделю в приемный пункт обращаются 480 клиентов. Среднее время обслуживания клиента 5 мин. Считая поток клиентов простейшим, а время обслуживания показательным, найти: а) финальные вероятности состояний; б) вероятность простоя химчистки.
Задача 3. Имеются данные о распределении рабочих по числу обслуживаемых станков.
-
Кол-во обсл. станков
6
7
8
9
10
Число рабочих
22
33
89
40
16
Вычислить выборочную среднюю, выборочную дисперсию, выборочное среднее квадратическое отклонение этой случайной величины.
Задача 4. Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью , зная выборочную среднюю , объем выборки n и среднее квадратическое отклонение : = 78,83; n = 80; = 6; = 0,97.
Задача 5. С помощью критерия Пирсона на уровне значимости =0,05 проверить гипотезу о нормальном законе распределения генеральной совокупности Х, если известны ее эмпирические и теоретические частоты:
-
5
10
20
25
11
4
6
14
28
18
6
3
Задача 6. Методами корреляционного анализа исследовать зависимость между выпуском продукции X (тыс.шт.) и себестоимостью одного изделия Y (тыс.руб.) на основе следующих данных. Проверить гипотезу о значимости выборочного коэффициента корреляции при заданном уровне значимости =0,05. Построить линейные уравнения регрессии.
-
X
34,2
29,1
23,2
40,3
31,1
18,0
Y
1,2
5,2
2,9
4,0
3,1
4,8