
- •Введение
- •1. Случайные события и вероятность
- •1.1. Пространство элементарных событий. Случайные события. Алгебра событий
- •1.2. Классическое определение вероятности. Статистическое определение вероятности
- •1.3. Элементы комбинаторики. Некоторые содержательные задачи
- •1.4. Аксиоматическое введение вероятности
- •1.5. Теоремы о вероятностях случайных событий
- •1.6. Формула полной вероятности и формула Байеса
- •1.7. Геометрические вероятности
- •1.8. Схема независимых испытаний Бернулли. Формула Бернулли. Формула Пуассона. Локальная и интегральная теоремы Муавра-Лапласа
- •Вопросы для самопроверки
- •2. Случайные величины
- •2.1. Случайные величины. Случайные величины дискретного типа. Ряд распределения. Функция распределения
- •2.2. Случайная величина непрерывного типа. Плотность вероятности распределения случайной величины
- •2.3. Числовые характеристики случайной величины. Математическое ожидание и дисперсия, их свойства
- •2.4. Пуассоновский поток событий
- •Вопросы для самопроверки
- •3. Системы случайных величин
- •3.1. Закон распределения системы двух случайных величин. Функция распределения, плотность распределения системы двух случайных величин
- •3.2. Условные законы распределения. Зависимые и независимые случайные величины
- •3.3. Числовые характеристики системы двух случайных величин. Корреляционный момент. Коэффициент корреляции
- •Вопросы для самопроверки
- •4. Функции случайных величин
- •4.1. Преобразование случайных величин (случай двух переменных)
- •4.2. Распределение суммы, разности, произведения и частного двух случайных величин
- •4.3. Преобразование случайных величин (случай одной переменной)
- •4.5. Распределение Стьюдента
- •Вопросы для самопроверки
- •5. Закон больших чисел
- •5.1. Неравенства Чебышева
- •5.2. Теорема Чебышева
- •5.3. Теорема Бернулли
- •5.4. Центральная предельная теорема
- •Вопросы для самопроверки
- •6. Случайные процессы. Марковские случайные процессы. Системы массового обслуживания
- •6.1. Случайные процессы
- •6.2. Марковские случайные процессы. Марковские цепи
- •6.3. Марковские процессы с дискретными состояниями и непрерывным временем. Уравнения Колмогорова
- •6.4. Процессы гибели и размножения
- •6.5. Потоки случайных событий
- •6.6. Приложения марковских процессов
- •6.7. Системы массового обслуживания
- •6.8. Системы массового обслуживания с отказами Одноканальная смо с отказами
- •6.9. Системы массового обслуживания с очередями
- •Вопросы для самопроверки
- •7. Математическая статистика
- •7.1. Генеральная совокупность и выборка. Статистический ряд. Статистическая функция распределения. Гистограмма
- •7.2. Точечные оценки параметров генеральной совокупности по выборочным совокупностям, их свойства. Точечные оценки для математического ожидания и дисперсии случайной величины
- •7.3. Интервальные оценки. Доверительный интервал. Нахождение доверительных интервалов для математического ожидания и дисперсии нормального распределения случайной величины
- •1. Доверительный интервал для оценки математического ожидания нормального распределения случайной величины с известным
- •2. Доверительный интервал для оценки математического ожидания нормального распределения с неизвестным
- •3. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •7.4. Построение прямых линий регрессии по выборочным данным
- •1. Нахождение параметров выборочных уравнений прямой линии регрессии по несгруппированным данным
- •2. Нахождение параметров выборочных уравнений прямой линии регрессии по сгруппированным данным
- •7.5. Нахождение оценки для коэффициента корреляции двух случайных величин
- •7.6. Статистическая проверка гипотез. Статистическая гипотеза. Нулевая и конкурирующая гипотеза. Статистический критерий. Критическая область
- •7.7. Проверка гипотезы о значимости выборочного коэффициента корреляции
- •7.8. Проверка гипотезы о распределении генеральной совокупности. Критерий 2 Пирсона
- •7.10. Сравнение генеральных средних двух нормально распределенных случайных величин (малые независимые выборки)
- •7.11. Сравнение двух дисперсий нормальных генеральных совокупностей
- •7.12. Сравнение наблюдаемой относительной частоты с гипотетической вероятностью наступления события
- •Вопросы для самопроверки
- •8. Варианты контрольной paбoты № 1 по теории вероятностей вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •9. Варианты контрольной работы № 2 по случайным процессам и математической статистике вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Приложение
- •Суммарные вероятности для распределения Пуассона
- •Критические точки распределения Стьюдента
- •Библиографический список
Вариант 3
Задача 1. В первом ящике 120 изделий, из них 10 с браком, во втором ящике 50 изделий, из них 5 бракованных. Из 1-го ящика переложили во второй одно изделие. Какова вероятность того, что взятое из второго ящика изделие не имеет брака
Задача 2. Производится серия из пяти выстрелов. Вероятность поражения цели при каждом выстреле равна 0,8. Составить закон распределения числа попаданий в цель и вычислить числовые характеристики этого распределения.
Задача 3. Найти вероятность того, что при 100 независимых испытаниях частота появления события дает отклонение от его вероятности при отдельном испытании р = 0,6 не более, чем на 0,03.
Задача 4. Случайная величина Х задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины.
Задача 5. Известны математическое ожидание а и среднее квадратическое отклонение нормально распределенной случайной величины Х. Найти вероятность попадания этой величины в заданный интервал (,) а=9, =5, =5, = 14.
Задача 6. Дисперсия каждой из данных независимых случайных величин не превышает 5. Найти число n таких величин, при которых вероятность отклонения средней арифметической случайных величин от средней арифметической их математических ожиданий по модулю не более, чем на 0,4 превышает 0,85.
Задача 7. Дана двумерная дискретная случайная величина (X, Y). Найти ее корреляционную матрицу.
X\Y |
-2 |
1 |
3 |
-1 |
0,15 |
0,1 |
0,35 |
1 |
0,15 |
0,2 |
0,05 |
Вариант 4
Задача 1. Известно, что 96 изделий отвечает стандарту. Упрощенная схема контроля признает пригодной стандартную продукцию с вероятностью 0,98 и нестандартную с вероятностью 0,05. Определить вероятность того, что изделие, прошедшее контроль, отвечает стандарту.
Задача 2. Монета подбрасывается 5 раз. Случайная величина X – число выпавших гербов. Составить закон распределения этой случайной величины и вычислить числовые характеристики (монету считать “правильной”).
Задача 3. В цехе работают 400 автоматов, каждый из которых в течение смены может потребовать внимания настройщика с вероятностью 0,2. Найти вероятность того, что 90 автоматов потребуют внимания настройщика в течение смены.
Задача 4. Случайная величина X задана функцией распределения F (х). Найти плотность распределения вероятности, математическое ожидание и дисперсию случайной величины.
Задача 5. Известны математическое ожидание а и среднее квадратическое отклонение нормально распределенной случайной величины Х. Найти вероятность попадания этой величины в заданный интервал (,); а=2, =5, =4, =9.
Задача
6.
Дисперсия
случайной величины Х равна
5. Произведено 100 независимых
опытов, по которым вычислено
.
Вместо неизвестного
значения математического
ожидания а
принято
.
Определить
максимальную величину
ошибки, допускаемую
при этом,
с вероятностью не менее 0,8.
Задача 7. Дана двумерная дискретная случайная величина (X, Y). Найти ее корреляционную матрицу.
-
X\Y
-2
-1
0
1
0,1
0,05
0,15
3
0,2
0,25
0,25