
- •Природная энергия
- •Раздел первый
- •1. Аккумулированная энергия (в веществе)
- •1.1. Старая новая энергия
- •1.2. Основные способы возбуждения процесса горения воздуха
- •2. Электричество
- •1.3. Основные схемы оптимизаторов горения воздуха
- •1.4. Основные схемы горелок воздуха (кислорода)
- •1.5. Краткий аннотированный комментарий
- •I. Основные способы возбуждения процесса горения воздуха
- •II. Основные схемы оптимизаторов горения воздуха
- •III Основные схемы горелок воздуха.
- •Iy. Магнитные электрогенераторы (мэг)
- •1.6. К теории взрыва
- •Раздел второй
- •2. Свободная энергия (эфира)
- •2.1. Структура электрического тока
- •Литература
- •2.2. Процессы накачки энергией магнитных энергогенераторов (мэг) из окружающей среды.
- •2.3. Магнитные электрогенераторы (мэг)
- •Другие типы генераторов
- •2.4. Источник и основные способы получения энергии в магнитных электрогенераторах (мэГах)
- •2.5. Программа исследования магнитов.
- •2.6. Методические пояснения к программе.
- •2.7. Техническое задание на ниокр «Разработка макетного образца автономного генератора электрической энергии на основе серийных трансформаторов малой мощности».
- •Санкт-Петербург 2006 г.
- •4. О перспективе работ этого направления.
- •2.8. Атомные конденсаторы.
- •2.9. Различие свойств диэлектриков и проводников
- •2.10. Холодная технология тонких пленок.
- •Раздел третий Ударно-волновые явления (течений)
- •3.1. Структура потоков жидкости
- •3.2. Импульсно-волновые движители (ивд) – новое направление в науке и технике по созданию антигравитации.
- •3.3. Эфирно-волновая энергетика-XXI.
- •3.4. Флаттер, подхват и экранный эффект есть частные случаи единого волнового механизма.
- •3.5. Опыты л.С.Котоусова
- •3.6. Насадок н.А. Шестеренко
- •3.7. Энерговолновые особенности торнадо как природного двигателя.
- •3.8. Динамический набор высоты и разгон – использование птицами природного явления.
- •3.9. Автономный гидродвигатель
- •Раздел четвертый
- •2. Энергоинформационные воздействия
- •4.1. Энерго-информационные технологии (Феноменология. Обзор явлений)
- •2. Торсионные технологии
- •4.2. Обзор: Технологические решения по энергоинформационным технологиям, включая обработку веществ (схемы)
- •4.3. Вода из воздуха
- •Переработка мусора каталитическая
- •4.5. Способы очищения – оздоровления человека. Частотно-волновая энерго-информационная настройка частотных каналов и исправление дефектов биополя (ауры) организма человека
- •4.6. Оздоровительное дыхание
- •Раздел пятый
- •5. Мировоззренческий аспект энергетики в природе
- •Структура электрона
- •Литература
- •5.2. Ода электрону
- •Элементарные принципы самоорганизации материи.
- •Как образуются планеты.
- •Земля – гироскоп и магнит.
- •Литература
- •Природная тайна энергетики циклонов.
- •Литература
- •6. Социальная природная энергетика
- •6.1. Социальная энергетика
- •6.2. Природная идеология: Равновесие интересов – основа стабильности общества
- •6.3. Энергетическая основа информационных воздействий на человека
- •6.4. Социальная роль сигнальных систем человека.
- •6.5. Естественный путь решения мировых проблем
- •6.6. Гуманистическая идеология и конституция.
- •6.7. Конституция России (тезисы)
- •О необходимости введения одного единственного налога
- •6.8. Русская идея – гармонизация мира.
- •Раздел седьмой
- •7. Природная бестопливная энергетика в технике
- •Горение
- •7.2. Новое обычное горение.
- •Энергетика: Структурная классификация энергоустановок.
- •7.4. Первоочередные направления создания энергоисточников на естественной энергии (в порядке приоритета).
- •Работы Андреева е.И.
- •7.5. Первоочередные направления применения энергоисточников естественной энергии (в порядке приоритета).
- •Патентные работы на перспективу по естественной энергетике
- •Технология горения воздуха в двс при бестопливном режиме работы
- •Основные способы воспламенения воздуха при бестопливном горении.
- •7.9. Необходимые и достаточные действия по настройке двс на бестопливный режим работы
- •Дополнительные комментарии
- •7.10. Какая нужна система управления углом зажигания
- •7.11. Об улучшении горения зажиганием в двс.
- •7.12. О пользе двухкамерного карбюратора для снижения расхода топлива
- •Повышение экологической эффективности двигателей внутреннего сгорания.
- •Техническое задание на опытно-конструкторскую разработку «Перевод дизельных двигателей внутреннего сгорания на сокращенный расход топлива».
- •1. Современное представление о горении.
- •Оптимизаторы горения.
- •3. Сравнительные испытания вариантов оптимизаторов горения.
- •4. Анализ лучших характеристик оптимизаторов.
- •5. Конструкторская разработка опытно-промышленных образцов оптимизаторов улучшенных характеристик.
- •6. Разработка программы и методики испытаний дизельных двигателей с опытно-промышленными оптимизаторами горения.
- •7. Подготовка опытного дизельного двигателя, стенда (объекта) для его испытаний и измерительной аппаратуры.
- •Проведение испытаний двигателя с разными вариантами оптимизаторов горения.
- •7.15. Первые промышленные энергоустановки
- •7.16. Стратегия разработки горелок
- •7.17. Развертывание промышленного освоения естественной энергетики.
- •7.18. Краткий перечень сведений по бестопливным горелкам
- •Схемы трубчатых элементов для горелок, оптимизаторов и электрических генераторов
- •7.20. Вихревой («молекулярный») двигатель ю.С. Потапова
- •Избыточная энергия гидроудара и ее использование
- •7.22. Нанотехнология горения
- •7.23. Проект
- •Раздел восьмой
- •Иллюстрации к основным энергетическим понятиям и процессам природы
- •8. Иллюстрации к основным энергетическим понятиям и процессам природы
3.6. Насадок н.А. Шестеренко
Является линейным аналогом описанного выше вихревого двигателя. Известен более 16 лет; имеются патенты, например, 2206409. Состоит из последовательно и соосно расположенных и герметично соединенных сопел: первого - сужающегося дозвукового, второго - расширяющегося сверхзвукового, третьего - сужающегося и четвертого - расширяющегося сверхзвукового (есть варианты).
Второе критическое сечение больше первого. Насадок, после пуска от компрессора, работает автономно, прокачивая воздух. Использовался на верфи г. Николаев для очистки днища кораблей, в качестве вентилятора кондиционеров. Расширение использования насадка сдерживается не столько его недостатками (большая шумность, неисследовательность характеристик и другие), сколько отсутствием внятного объяснения принципа действия и главного вопроса: откуда энергия? Традиционные, даже очень знающие, специалисты не видят источника избыточной энергии и поэтому не верят в работоспособность насадка.
Принцип разгона звуковой волны, описанный ранее, позволяет дать это объяснение (в первом приближении). Сколько ни повышай давление перед первым критическим сечением, скорость газа в нем будет всегда звуковой и не более. Для того, чтобы подсасывался воздух из атмосферы, нужно уменьшить давление за критическим сечением с помощью расширяющегося сверхзвукового сопла. Однако, если на этом остановиться, то торможение выходящего из сопла потока атмосферным давлением не позволит обеспечить автономную работу насадка. Необходимо второе критическое сечение, которое так же, как и первое, запиралось бы второй звуковой скоростью и обеспечивало стабильный вакуум в расширяющемся сопле. Для этого после него ставят (второе) сужающееся сопло, оканчивающееся (вторым) критическим сечением, за которым следует (второе, последнее) расширяющееся сопло.
Во втором сужающемся сопле малые (звуковые) возмущения давления в виде акустических волн со звуковой скоростью следуют от большего давления на стенке) к меньшему - на оси потока. Волны давления, вызванные последовательной деформацией глобул молекул воздуха из-за изменения формы (сужающегося) сопла, сносятся текущим потоком ко второму критическому сечению, где и останавливаются (как и в обычном первом). Здесь, в критическом сечении давление повышается не только за счет кинетической энергии потока при уменьшении его скорости, но и - за счет указанных звуковых волн, так как давление в них соответствует большему (на стенке). Это и есть избыточная энергия, получаемая, в конечном счете, от атмосферного давления внешней среды. Передача происходит путем электродинамического взаимодействия молекул (последовательно) наружного воздуха, затем молекул кристаллической решетки материала стенки, и, наконец, - молекул текущего в сопле потока газа. Как видно, срабатывается разность давлений: от атмосферного (вне насадка) и до самого меньшего - на оси потока. В этом усматривается четкая аналогия насадка Шестеренко с вихревым двигателем Потапова: срабатывание атмосферного давления.
Регулярно повторяющиеся частотные импульсы звуковых волн подталкивают поток газа к (второму) критическому сечению, нагнетают газ, создавая тем самым избыточное давление в критическом сечении, где скорости звука и потока равны друг другу. Движения звуковых волн от периферии к оси потока больше концентрируется в зонах с меньшими скоростями потока, то есть на периферии, так как часть более скоростного потока ближе к оси сносится, не успевая получить импульс. Импульсы волн по слою газа с близкими к нулю скоростями вдоль стенки достигают критического сечения с звуковой скоростью и давлением на фронте волны, соответствующим давлению на стенке, то есть - большему давлению. Причем давление на фронте волны в газе в несколько раз больше среднего давления на стенке. От каждой точки на стенке волны распространяются в виде сферических изоповерхно-стей, накладываясь друг на друга и двигаясь, как видно, в обе стороны по отношению к направлению потока. Встречная скорость потока увеличивает время достижения волной критического сечения, но все равно волна давления приходит туда и заполняет все сечение. При этом встречный сверхзвуковой поток может так сносить звуковую волну, что она по нему не успеет пойти, но пойдет все равно по пристеночному пограничному слою с малой или близкой к дозвуковой и нулевой скорости и быстро (со своей скоростью звука) доберется по этому слою или даже по кристаллической решетке стенки сопла до критического сечения.
Таким образом, звуковые волны движутся к критическому сечению с двух сторон: по и против потока. При увеличении или уменьшении давления газа до или после критического сечения давления приходящих к нему звуковых волн соответственно изменяются также с двух сторон взаимно компенсируя друг друга и поддерживая в сечении точно звуковую скорость несмотря на какие-либо изменения параметров потока вне критического сечения. Взаимокомпенсация давления и обеспечивает явление запирания критического сечения, не позволяющее увеличивать в нем скорость выше звуковой как бы не менялись параметры газа вне этого сечения.
Отдельно еще раз отметим, что в коническом сходящемся сужающемся насадке происходит накачка энергии из внешней среды (атмосферы) в виде звуковых волн, движущихся к критическому сечению под действием разности давлений в направлении к меньшему давлению на оси потока. Это явление накачки энергией движущейся среды в коническом насадке понадобится нам при рассмотрении вопроса в следующем параграфе.
Е.И. Андреев 1.11.2007.