Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика.лабораторные Морозов.Н.Н.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.13 Mб
Скачать

Статистический подход

В 1878 году Л. Больцман дал вероятностную трактовку понятия энтропии. Он предложил рассматривать энтропию как меру статистического беспорядка в замкнутой термодинамической системе. При этом Л. Больцман исходил из общего положения: природа стремится от состояний менее вероятных к состояниям более вероятным.

Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния. Всякое состояние макроскопической системы, содержащей большое число частиц, может быть реализовано многими способами.  

Термодинамическая вероятность W состояния системы – это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние.

По определению термодинамическая вероятность W >> 1.

Например, если в сосуде находится 1 моль газа, то возможно огромное число N способов размещения молекулы по двум половинкам сосуда: = 2 NA где NA число Авогадро.

Каждый из них является микросостоянием. Только одно из микросостояний соответствует случаю, когда все молекулы соберутся в одной половинке (например, правой) сосуда. Вероятность такого события практически равна нулю. Наибольшее число микросостояний соответствует равновесному состоянию, при котором молекулы равномерно распределены по всему объему. Поэтому равновесное состояние является наиболее вероятным. Равновесное состояние с другой стороны является состоянием наибольшего беспорядка в термодинамической системе и состоянием с максимальной энтропией.

Согласно Больцману, энтропия S системы и термодинамическая вероятность W связаны между собой следующим образом:

S = k lnW,

где k = 1,38·10–23 Дж/К – постоянная Больцмана.

Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. 

Вероятностная трактовка второго закона термодинамики допускает самопроизвольное отклонение системы от состояния термодинамического равновесия. Такие отклонения называются флуктуациями4. В системах, содержащих большое число частиц, значительные отклонения от состояния равновесия имеют чрезвычайно малую вероятность. Наличие флуктуаций показывает, что закон возрастания энтропии выполняется только статистически: в среднем для большого промежутка времени.

Расчет изменения энтропии для различных процессов

Основными процессами в термодинамике являются:

  • изохорный, протекающий при постоянном объеме;

  • изобарный, протекающий при постоянном давлении;

  • изотермический, происходящий при постоянной температуре;

  • адиабатный, при котором теплообмен с окружающей средой отсутствует.

Изохорный процесс

При изохорном процессе выполняется условие V = const.

Из уравнения состояния идеального газа (pV = RT) следует:

/ T = R / V = const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

p2 / p1 = T2 / T1.

Изменение энтропии в изохорном процессе определяется по формуле:

s2 – s1 = Δs = cv ln (p2 / p1) = cv ln (T2 / T1)

Изобарный процесс

Изобарным называется процесс, протекающий при постоянном давлении p = const.

Из уравнения состояния идеального газа следует:

V / T = R / p = const.

Изменение энтропии будет равно: 

s2s1= Δs = cp ln (T2 / T1).

Изотермический процесс

 При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

pV = RT = const

Изменение энтропии равно:

s2 – s1 = Δs = Rln(p1/p2) = ln(V2 / V1).

Адиабатный процесс

Адиабатным называется процесс изменения состояния газа, который происходит без теплообмена с окружающей средой (Q = 0).

Уравнение кривой адиабатного процесса (адиабаты) в p-V диаграмме имеет вид:

pV k = const.

В этом выражении k носит название показателя адиабаты (так же ее называют коэффициентом Пуассона).

Изменение энтропии равно:

ΔS = S2S1 = 0, т.е. S2= S1.