Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика.лабораторные Морозов.Н.Н.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.13 Mб
Скачать

Закон возрастания энтропии

Рис.2. Необратимый круговой термодинамический процесс

Применим неравенство (3) для описания необратимого кругового термодинамического процесса, изображенного на рис 2.

Пусть процесс будет необратимым, а процесс - обратимым. Тогда неравенство (3) для этого случая примет вид:

(4)

Так как процесс является обратимым, для него можно воспользоваться соотношением (2), которое дает:

(5)

 Подстановка этой формулы в неравенство (4) позволяет получить выражение:

(6)

Сравнение выражений (2) и (6) позволяет записать следующее неравенство:

(7)

в котором знак равенства имеет место в случае, если процесс является обратимым, а знак больше, если процесс – необратимый.

     Неравенство (7) может быть также записано и в дифференциальной форме:

(8)

Если рассмотреть адиабатически изолированную термодинамическую систему, для которой , то выражение (8) примет вид:   ΔS = S– S≥ 0

или в интегральной форме:

/dS ≥ 0 (9)

Из формулы (9) следует: S2 S1.

Полученные неравенства выражают собой закон возрастания энтропии, который можно сформулировать следующим образом:

      В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

      Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

      Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

Термодинамическому равновесию адиабатической системы соответствует состояние с максимумом энтропии. Энтропия может иметь не один, а несколько максимумов, при этом система будет иметь несколько состояний равновесия. Равновесие, которому соответствует наибольший максимум энтропии называется абсолютно устойчивым (стабильным). Из условия максимальности энтропии адиабатические системы в состоянии равновесия вытекает важное следствие: температура всех частей системы в состоянии равновесия одинакова.

Рост энтропии является общим свойством всех самопроизвольно протекающих необратимых процессов в изолированных термодинамических системах. В состоянии равновесия энтропия принимает максимальное значение. В состоянии с максимальной энтропией макроскопические необратимые процессы невозможны.

При обратимых процессах в изолированных системах энтропия не изменяется.

Необходимо отметить, что если система не является изолированной, то в ней возможно уменьшение энтропии. Примером такой системы может служить, например, обычный холодильник, внутри которого возможно уменьшение энтропии. Но для таких открытых систем это локальное понижение энтропии всегда компенсируется возрастанием энтропии в окружающей среде, которое превосходит локальное ее уменьшение.