
- •© Фгбоувпо Мурманский государственный технический университет 2013
- •Введение
- •Порядок выполнения лабораторных работ
- •Приборы для измерения линейных размеров тел
- •Миллиметровая линейка
- •Штангенциркуль
- •Как пользоваться штангенциркулем
- •Микрометр
- •Отсчет показаний
- •О погрешностях измерений
- •Порядок операций при обработке результатов серии измерений
- •При косвенных измерениях:
- •Лабораторная работа № 3 Изучение законов равноускоренного движения тел
- •Теоретические сведения
- •Основные понятия и законы Скорость
- •Ускорение
- •Ускорение точки при прямолинейном движении
- •Законы Ньютона
- •Первый закон Ньютона
- •Второй закон Ньютона
- •Третий закон Ньютона
- •.2. Теория лабораторной работы
- •У стройство и принцип действия прибора Атвуда
- •Следовательно, ускорение системы
- •Измерения и обработка результатов
- •Проверка формулы пути
- •Журнал наблюдений 1
- •Расчет погрешностей измерений:
- •2. Проверка формулы скорости
- •Журнал наблюдений 2
- •.3. Проверка второго закона Ньютона
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 5
- •Теоретические сведения
- •Основные понятия и законы Кинематика вращательного движения
- •Равномерное вращательное движение
- •Неравномерное вращение
- •Равнопеременное вращение
- •Связь линейных и угловых характеристик
- •Момент инерции
- •Момент силы
- •Момент импульса
- •Основное уравнение динамики вращательного движения
- •Аналогия между поступательным и вращательным движениями
- •Теория лабораторной работы Устройство и принцип действия маятника Обербека
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 6
- •Теоретические сведения
- •Основные понятия и законы Свободное падение
- •Механические колебания
- •– По характеру взаимодействия с окружающей средой:
- •Гармонические колебания
- •Физический маятник
- •2. Теория лабораторной работы
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 8
- •Теоретические сведения
- •1.Основные понятия и законы Гармонические колебания
- •Момент инерции
- •Момент силы
- •2. Теория лабораторной работы
- •Измерения и обработка результатов
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 12
- •Теоретические сведения
- •Основные понятия и законы Деформация
- •Механическое напряжение
- •Закон Гука
- •Диаграмма растяжения
- •Кручение
- •2. Теория лабораторной работы Теоретические сведения
- •Описание установки
- •Измерения и обработка результатов
- •Литература
- •Лабораторная работа № 14
- •Теоретические сведения
- •1.Основные понятия и законы Деформация
- •Закон Гука
- •Механическое напряжение
- •Диаграмма растяжения
- •2. Теория лабораторной работы Теоретические сведения
- •Описание установки
- •Измерения и обработка результатов
- •Окончательный результат:
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 15
- •Цель работы: Ознакомиться с явлением возникновения стоячих звуковых волн и определить опытным путем скорость звука в воздухе.
- •Основные понятия и законы Упругие волны. Длина волны
- •Гармоническая волна
- •Бегущая волна
- •Интерференция волн
- •Стоячие волны
- •2. Теория лабораторной работы
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 17 Определение момента инерции маховика
- •Теоретические сведения .1. Основные понятия и законы Кинематика вращательного движения
- •Равномерное вращательное движение
- •Неравномерное вращение
- •Равнопеременное вращение
- •Связь линейных и угловых характеристик
- •Момент инерции
- •Момент силы
- •Момент импульса
- •Основное уравнение динамики вращательного движения
- •.2. Теория лабораторной работы Теоретические сведения
- •Описание установки
- •Измерения и обработка результатов
- •Расчет погрешностей измерений:
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 19
- •Теоретические сведения
- •.2. Теория лабораторной работы
- •Описание установки
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 20 Определение коэффициента теплопроводности твердого тела
- •Теоретические сведения .1. Основные понятия и законы
- •Теплопроводность в твердых телах
- •Уравнение теплопроводности
- •Теория лабораторной работы Теоретические сведения
- •Описание установки
- •Измерение и обработка результатов
- •Контрольные вопросы:
- •Литература
- •Лабораторная работа № 21 Определение отношения теплоемкостей газа
- •Цель работы: Найти величину отношения cp /cv для воздуха.
- •Теоретические сведения .1. Основные понятия и законы Теплоёмкость
- •Удельная и молярная теплоёмкости
- •Адиабатный процесс
- •.2. Теория лабораторной работы
- •Измерения и обработка результатов
- •Окончательный результат:
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 22
- •Теоретические сведения .1. Основные понятия и законы
- •1.1 Строение жидкости
- •1.2 Поверхностное натяжение
- •1.3. Коэффициент поверхностного натяжения
- •1.4 Определение коэффициента поверхностного натяжения
- •.2. Теория лабораторной работы Теоретические сведения
- •Измерения и обработка результатов
- •Расчет погрешностей измерений:
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 24 Определение коэффициента вязкости жидкости по методу Стокса
- •Теоретические сведения /1. Основные понятия и законы Явление внутреннего трения (вязкость)
- •Влияние температуры на вязкость
- •Сила вязкого трения
- •Вязкость газов
- •.2. Теория лабораторной работы Теоретические сведения
- •Описание установки
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 25 Изменение энтропии при нагревании и плавлении олова
- •Теоретические сведения
- •1.Основные понятия и законы Термодинамическая фаза. Фазовый переход
- •Плавление твердых тел
- •Обратимые и необратимые процессы
- •Второй закон термодинамики
- •Энтропия
- •Термодинамический подход
- •Закон возрастания энтропии
- •Статистический подход
- •Фазовые переходы
- •Второе начало термодинамики и «тепловая смерть Вселенной»
- •Измерение энтропии
- •2.Теория лабораторной работы Теоретические сведения
- •Измерения и обработка результатов
- •Контрольные вопросы
- •Литература
Теплопроводность в твердых телах
Теплопроводность относится к явлениям переноса, причиной её является наличие градиента температуры между частями тела.
Теплопроводность – это передача внутренней энергии от одной части тела к другой без переноса вещества.
Молекулярно-кинетическая теория вещества объясняет этот процесс следующим образом. Так как температура – это мера средней кинетической энергии молекул, то различие температур двух участков тела свидетельствует о том, что кинетические энергии молекул в этих участках различны. Поэтому молекулы двух соприкасающихся слоев, сталкиваясь, передают свою кинетическую энергию от слоя к слою.
Уравнение теплопроводности
Количественно явление теплопроводности во всех телах описывается уравнением Фурье, согласно которому количество тепла dQ, прошедшее за время dt через некоторую площадку s, перпендикулярную направлению распространения тепла, выражается формулой:
Как следует из формулы, измеряется в СИ в единицах Дж/(мсК). Величина dT / dl характеризует быстроту изменения температуры в направлении распространения тепла и численно равна изменению температуры тела на единице длины в этом направлении. Она называется градиентом температуры. Знак минус в уравнении Фурье указывает, что поток тепла направлен в сторону, противоположную градиенту температуры.
Коэффициент , зависящий от физической природы вещества и его состояния, называется коэффициентом теплопроводности. Физический смысл его можно установить из следующих соображений. Если положить в формуле (4) s = 1; dt = 1; и dT / dl = 1, то dQ = . Это означает, что коэффициент теплопроводности численно равен количеству тепла, переносимому за 1 секунду через единицу площади, перпендикулярной направлению распространения тепла, если градиент температуры равен единице.
Можно доказать, что = (1/3) сV ρ <ν> <l>,
где сV — удельная теплоемкость газа при постоянном объеме (количество теплоты, которое необходимо для нагревания 1 кг газа на 1 К при постоянном объеме), ρ — плотность газа, <ν> — средняя скорость теплового движения молекул, <l> — средняя длина свободного пробега.
Теория лабораторной работы Теоретические сведения
В настоящей работе рассматривается теплопроводность металлов. Если взять металлический стержень и нагревать один конец его, то начнется перенос энергии и температура различных его участков будет повышаться. Дойдя до известного предела, температура для каждого определенного участка стержня делается постоянной. Такое состояние потока тепловой энергии, при котором температура отдельных участков тела с течением времени не меняется, является установившимся, или стационарным. При этом количество энергии, получаемой данным участком, равно количеству энергии, которое он отдает соседним.
В основу работы положен закон теплопроводности Фурье, который в интегральной форме имеет следующий вид:
(1)
где S – площадь сечения стержня, м2; l – длина стержня, м; Т2 – температура горячего слоя, оС; Т1 – температура холодного слоя, оС; – время в течение которого происходит перенос энергии, с.
Коэффициент
пропорциональности
и является коэффициентом теплопроводности
данного вещества. Величина
представляет собой изменение температуры
на единицу длины в направлении передачи
теплоты и называется градиентом
температуры.
Из
формулы (1):
,
Вт/(мК).