Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика.лабораторные Морозов.Н.Н.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.13 Mб
Скачать

Момент инерции

Момент инерции – скалярная величина, характеризующая  распределения масс в теле и являющаяся наряду с массой мерой инертности тела при непоступательном движении. 

Единица измерения СИ: кг·м². Обозначение: I или J.

Момент инерции тела относительно оси вращения  зависит от массы тела и от распределения этой массы. Чем больше масса тела и  чем дальше она отстоит от воображаемой оси, тем большим моментом инерции обладает тело.

Момент инерции элементарной (точечной) массы m, отстоящей от оси на расстоянии  r, равен:  

Ii = mi ri2

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

где:

  • mi — масса i-й точки,

  • ri — расстояние от i-й точки до оси.

,

где:

  •  — масса малого элемента объёма тела ,

  •  — плотность,

  •  — расстояние от элемента до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения

Тело

Описание

Положение оси a

Момент инерции Ja

Материальная точка массы m

На расстоянии r от точки, неподвижная

Полый тонкостенный цилиндр или кольцо радиуса r и массы m

Ось цилиндра

Сплошной цилиндр или диск радиуса r и массы m

Ось цилиндра

Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1

Ось цилиндра

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его центр масс

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его конец

Тонкостенная сфера радиуса r и массы m

Ось проходит через центр сферы

Шар радиуса r и массы m

Ось проходит через центр шара

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

J = Jc + md2

Если J0 — момент инерции тела относительно оси, проходящей через центр масс тела, то момент инерции относительно параллельной оси, расположенной на расстоянии от неё, равен

J = J0 + md2,

.где m — полная масса тела (рис. 1).

Рис. 1

Например, момент инерции стержня относительно оси, проходящей через его конец, равен: