
- •2. Устройства для смены и зажима режущего инструмента на многоцелевых станках.
- •5. Мрс как основной компонент технологической системы. Структура современного мрс.
- •6. Порядок кинематического расчета коробки скоростей.
- •7. Гидростатические направляющие.
- •8. Показатели технического уровня мрс, их иерархия.
- •10. Конструирование направляющих качения. Основы расчета.
- •10 Продолжение
- •10 Продолжение
- •11. Служебное назначение станков. Методы формообразования на них.
- •12. Механизмы переключения подач.
- •13. Способы регулирования зазоров в направляющих. Зажимные устройства для подвижных узлов на различных типах направляющих.
- •14. Геометрические характеристики зоны формообразования мрс.
- •16 . Основные проектные критерии качества, особенности конструкции и материалы для изготовления корпусных деталей станка.
- •17. Универсальность, гибкость и экономическая эффективность мрс
- •18. Расчет шпиндельного узла на точность. Критерии выбора подшипников качения. Методы повышения точности. Смазка и уплотнения подшипников шпинделей.
- •18 Продолжение смазывания подшипников качения пластичным материалом
- •20 Обеспеч надежности
- •21. Расчет шпиндельного узла на жесткость. Методы повышения жесткости. Регулировка зазора и предварительный натяг подшипников качения.
- •22. Особенности конструирования универсальных, специальных и специализированных станков.
- •23. Точность мрс и ее обеспечение.
- •24. Гидростатические опоры шпинделя. Особенности конструкции и расчета.
- •25. Особенности конструирования прецизионных станков и станков с чпу.
- •26. Обеспечение жесткости мрс.
- •27. Гидродинамические опоры шпинделя. Особенности конструкции и расчета.
- •29. Неустановившиеся процессы в мрс.
- •30. Тяговые устройства привода подач
- •2(41).Передача винт-гайка скольжения
- •3Передача червяк-рейка качения
- •4.Гидростатич червячно реечная передача
- •32 Основные показатели динамического качества станков:
- •33. Выбор тягового устройства механизмов подач.
- •2.Передача винт-гайка скольжения
- •3Передача червяк-рейка качения
- •4.Гидростатич червячно реечная передача
- •34. Обеспечение теплостойкости мрс.
- •35 Привод и конструкции механизмов быстрого перемещения
- •36. Поворотно-фиксирующие механизмы. Классификация. Устройство.
- •37. Процессы изнашивания. Обеспечение износостойкости мрс.
- •38. Обеспечение плавности микроперемещений и позиционирования. Приводы микроперемещений.
- •39. Устройства для загрузки заготовок.
- •40. Общий алгоритм проектирования мрс. Стадийность конструкторских работ.
- •41. Передача винт-гайка скольжения. Конструкция. Основы расчета
- •42. Порядок проектирования агрегатного станка. Назначение и конструирование шпиндельных коробок,
- •44. Передача винт-гайка качения. Конструкция. Основы расчета
- •47. Классификация направляющих. Выбор формы поперечного сечения.
- •48. Силовые столы и инструментальные бабки агрегатных станков. Назначение и конструкции.
- •50. Конструкция направляющих скольжения. Основы расчета,
- •51. Поворотные делительные столы агрегатных станков. Назначение и особенности конструкции.
- •53. Кулачковый механизм,
- •65 Паспорта станков
- •71 Выбор электродвигателей
- •6.3.1. Выбор электродвигателей
Эволюция металлорежущих станков (МРС). Задачи отечественного станкостроения.
Металлорежущий станок – это технологическая машина предназначенная для резания заготовок, главным образом снятием стружки режущим инструментом.
1–я стадия: станок-орудие – облегчает труд рабочего но не вносит изменений в
ход ручного технологического процесса.
2-я стадия: станок-машина – всё относительные движения формообразования
осуществляется станком.
3-я стадия: станок-автомат – управление циклом обработки осуществляется
механизмами самого станка. За рабочим-оператором – функция
наладки и обслуживания.
4-я стадия: саморегулирующий станок-автомат.
2. Устройства для смены и зажима режущего инструмента на многоцелевых станках.
Смена инструмента осуществляется поворотом револьверной головки.Она имеет 4,6,12,16 рабочих позиций
Достоинства: простота конструкции,небольшая t
Недостатки: недостаточная жесткость, небольшое число размещений инструмента
Применение: в токарных автоматах, агрегатных станках, фрезерных с ЧПУ
Если в револьверной головке закрепляется инструмент, то в процессе обработки
он не вращается.
Оси инструмента могут быть направлены параллельно оси головки, радиально и под углом к оси. Иногда применяют 2 револьверные головки, которые установлены концентрично.
4. Защитные устройства направляющих. Смазывание направляющих.
Устройства для защиты направляющих. Защитные уплотнения выполняют в виде металлических скребков, прикрепленных к торцу стола, суппорта, салазок и прижимаемых к направляющим благодаря собственной упругости или пружине, а также в виде войлочных, полимерных или комбинированных уплотнений. Металлические скребки не предохраняют зону трения от мелких частиц загрязнений, войлочные уплотнения сами быстро загрязняются и истирают поверхность направляющих. Рабочие поверхности лучше очищают резиновые и пластмассовые уплотнения, применяемые самостоятельно или в комбинации с другими защитными устройствами.
Продольные щитки в виде металлических планок или кожухов (по одному на каждую направляющую) прикрепляют к подвижному или неподвижному узлу. Щитки могут быть снабжены уплотнениями или образовывать лабиринтное уплотнение.
Телескопические щитки с уплотнениями имеют хорошие эксплуатационные свойства и применяются в средних и тяжелых станках.
Гармоникообразные меха служат для защиты направляю щих шлифовальных, заточных, зубообрабатывающих и других станков в тех случаях, когда на защитное устройство не попадает острая или горячая стружка.
Стальная лента, применяемая для защиты направляющих, может быть закреплена у торцов станины и проходить внутри стола или станины. При использовании двух лент одним концом они прикрепляются к столу, а с противоположной стороны наматываются на барабаны у торцов станины.
Смазывание направляющих. Подачей жидкого смазочного материала на направляющие скольжения создают на их рабочих поверхностях режим смешанного трения, в результате чего значительно снижается скорость изнашивания.
Вязкость смазочного материала выбирают в зависимости от условий трения. Если давление в контакте высокое, а скорость скольжения малая, необходимо применять смазочные материалы относительно большой вязкости. Например, горизонтальные направляющие в узле подачи при значительном на-гружении следует смазывать маслом с кинематической вязкостью около 10 • 10~7 м''/с, а направляющие, работающие при малых и средних нагрузках,— маслом с вязкостью (2,7...6,5) 10-7 м2/с.
Для снижения коэффициента трения покоя и движения в направляющих скольжения узлов при малых скоростях движения, а следовательно, и для обеспечения равномерности малых подач, повышения точности и чувствительности установочных перемещений столов, суппортов и других узлов применяют антискачковые масла. В них содержатся присадки, способствующие образованию прочной масляной пленки на контактирующих поверхностях, которая сохраняется при малых скоростях скольжения и высоких давлениях в контакте. Для смазывания горизонтальных направляющих станков общего назначения рекомендуется применять масла ИНСп-20 и ИНСп-40, причем первое масло пригодно для системы смазывания, общей с гидросистемой. Для вертикальных направляющих и горизонтальных с вертикальными гранями большой площади наиболее подходит масло ИНСп-110.
Поверхности, смазываемые антискачковыми маслами, следует хорошо защищать от загрязнений. Применение этих дорогих масел должно быть экономически оправдано.
Смазочный материал подается на направляющие скольжения разными способами. Обычно применяют централизованные циркуляционные смазочные системы последовательного и импульсного типов. Реже используются проточные системы с ручным насосом, с индивидуальными масленками, с роликами, фитильная.
Смазочный материал подается на направляющие со стороны перемещающегося узла или со стороны неподвижного. С помощью распределителя смазочный материал подводится ко всем рабочим поверхностям направляющих. От смазочных точек по канавкам он распределяется по всей площади контакта.