
- •Электрический привод
- •Магнитогорск
- •Предисловие
- •Глава первая. Электропривод как система
- •1.1 Определение понятия «электропривод». Блок-схема электропривода
- •1.2 Классификация электроприводов
- •Безредукторный.
- •1.3 Краткая история развития электропривода
- •Глава вторая. Механическая часть силового канала электропривода
- •2.1 Кинематические схемы механической части электропривода. Типовые нагрузки
- •2.2 Расчётные схемы механической части электропривода
- •2.3 Уравнения движения электропривода
- •2.4. Механические переходные процессы электропривода
- •2.5 Механические характеристики двигателей и механизмов в электроприводе
- •2.6. Режимы преобразования энергии в электроприводе и ограничения, накладываемые на их протекание
- •Глава третья. Физические процессы в электроприводах с двигателями постоянного тока независимого (параллельного) возбуждения
- •3.1 Основные уравнения и соотношения для электроприводов с двигателями постоянного тока независимого возбуждения
- •3.1.1. Принцип действия. Основные уравнения
- •3.2 Механические и электромеханические характеристики электропривода с дпт нв
- •3.3 Естественная характеристика эп с дпт нв
- •3.4. Искусственные статические характеристики электропривода с дпт нв
- •3.5 Тормозные режимы работы электропривода с дпт нв
- •1.Тормозной с отдачей энергии в сеть (рекуперативное ) или генераторный режим работы параллельно с сетью
- •2.Торможение противовключением или генераторный режим последовательно с сетью
- •3. Динамическое торможение или генераторное независимо от сети
- •Глава четвёртая. Физические процессы в электроприводах с двигателями последовательного и смешанного возбуждения
- •4.1. Основные уравнения и основные соотношения для электроприводов с двигателями последовательного возбуждения
- •4.2. Особенности статических режимов и характеристик электроприводов с двигателями постоянного тока смешанного возбуждения (дпт св)
- •Глава пятая. Физические процессы в электроприводах с асинхронными и синхронными двигателями
- •5.1. Принцип действия асинхронного электропривода. Схемы включения
- •5.2. Статические электромеханические и механические характеристики асинхронного электропривода
- •5.3. Энергетические показатели асинхронных электроприводов
- •5.4. Тормозные режимы работы асинхронных электроприводов
- •5.5. Электропривод с синхронным и вентильно – индукторным двигателями
- •Глава шестая. Электрическая часть силового канала электропривода
- •6.1. Электромашинные преобразователи электрической энергии. Система г - д
- •6.2. Статические преобразователи электрической энергии в электроприводах постоянного тока
- •6.2.1. Блок схема тиристорного электропривода. Схемы выпрямления
- •6.2.2. Основные характеристики тиристорного преобразователя и системы тп-д
- •6.2.3. Инверторный режим работы тиристорного электропривода
- •6.2.4. Электромеханические и механические характеристики реверсивного тиристорного электропривода
- •6.3. Статические преобразователи частоты и напряжения в электроприводах переменного тока
- •6.3.1. Преобразователи частоты со звеном постоянного тока
- •6.3.2. Асинхронный электропривод на основе пч с аин и управляемым выпрямителем
- •6.3.3. Асинхронный электропривод на основе пч с аин с широтно-импульсной модуляцией
- •6.3.4. Электропривод переменного тока на основе преобразователей частоты с непосредственной связью
- •6.3.5. Механические характеристики электропривода переменного тока с преобразователями частоты
- •Глава седьмая. Принципы управления в электроприводе
- •7.1 Релейно-контакторные системы управления электроприводов
- •7.1.1. Реостатный пуск электроприводов с рксу. Расчёт пусковых диаграмм и сопротивлений
- •7.2. Переходные процессы в разомкнутых электроприводах
- •7.2.1. Общие сведения
- •7.2.2. Переходные процессы в электроприводах с линейными механическими характеристиками при и быстрых изменениях воздействующего фактора
- •7.2.3. Переходные процессы в асинхронном электроприводе с нелинейными механическими характеристиками
- •Глава восьмая. Основы выбора мощности двигателей в электроприводе
- •8.1. Общие сведения
- •8.2. Нагревание и охлаждение двигателей
- •8.3. Допустимые по нагреву режимы работы электродвигателей
- •8.4. Общая методика выбора двигателей
- •8.5. Методы проверки двигателей по нагреву
- •8.5.1. Метод средних потерь
- •8.5.2. Методы эквивалентных величин
- •8.6. Проверка двигателей по нагреву в повторно-кратковременном режиме
- •8.7. Некоторые замечания по выбору двигателей
- •Список литературы
- •Оглавление
1.2 Классификация электроприводов
Классификация электроприводов производится по различным признакам. Разнообразные электроприводы с учётом их исторического развития и с точки зрения способа распределения механической энергии можно разделить на три основных типа: групповой, индивидуальный и взаимосвязанный.
Групповой электропривод обеспечивает движение нескольких рабочих машин или нескольких исполнительных механизмов (ИМ) рабочей машины. Передача механической энергии от одного двигателя к нескольким рабочим машинам и её распределение между ними производится с помощью трансмиссий. Такой групповой электропривод называют также трансмиссионным (рис. 1.2). Другая разновидность группового электропривода – это установка на каждую рабочую машину своего электродвигателя. Однако при этом сохраняется система распределения механической энергии внутри машины между исполнительными механизмами (рис. 1.3).
Для примера можно привести групповой электропривод рабочего рольганга, где от одного двигателя приводится во вращение N роликов через трансмиссию (редуктор и конические шестерни). А также групповой электропривод рабочих валков прокатной клети с использованием шестерённой клети и универсальных шпинделей.
Рис. 1.2. Схема группового Рис.1.3. Схема группового
трансмиссионного ЭП электропривода
Вследствие своего технического несовершенства трансмиссионный электропривод в настоящее время практически не применяется, кроме группового электропривода по схеме на рис. 1.3.
Индивидуальный электропривод обладает существенными преимуществами перед групповым электроприводом: упрощается кинематическая схема привода, улучшаются условия безопасности труда, снижаются потери в трансмиссиях и передаточных устройствах, повышается надёжность работы, увеличивается быстродействие привода, создаются благоприятные условия для автоматизации работы рабочих машин и технологических комплексов. Индивидуальным является электропривод, в котором каждый ИМ рабочей машины приводится в движение от индивидуального двигателя, широко применяемый в различных современных машинах, например, в сложных металлорежущих станках, в прокатном производстве, конверторном производстве стали, бумагоделательных машин, в подъёмно-транспортных машинах, экскаваторах, роботах и т.п.
Взаимосвязанный электропривод содержит два или несколько электрически или механически связанных между собой электродвигателей или электроприводов, при работе которых поддерживается заданное соотношение или равенство скоростей или нагрузок, или положения ИМ рабочих машин. Необходимость в таком электроприводе часто возникает по конструктивным или техническим соображениям.
Примером взаимосвязанного электропривода может служить привод непрерывной группы валков прокатных клетей, связанных между собой через прокатываемый металл, где требуется постоянство соотношения скоростей клетей исходя из постоянства секундного объёма металла, проходящего через клети.
Другим примером взаимосвязанного электропривода является многодвигательный электропривод, в котором двигатели работают на один вал по соображениям дробления мощности двигателей, быстродействия, надежности и конструктивного исполнения. Например, электропривод скиповой лебёдки доменных печей.
Многообразие технологических процессов обуславливает и различные виды, и характеры движения ИМ рабочих машин, а, следовательно, электроприводов.
По виду движения электроприводы могут обеспечивать: вращательное однонаправленное движение, вращательное реверсивное и поступательное реверсивное движение. Вращательное движение осуществляется электродвигателями обычного исполнения. Поступательное движение может быть получено путём использования электродвигателя вращательного движения обычного исполнения совместно с преобразовательным механизмом (кулисным, винтовым, реечным и т.п.), либо применения электродвигателя специального исполнения для поступательного движения (так называемые линейные электродвигатели, магнитогидродинамические и др.).
По степени управляемости электроприводы могут быть:
нерегулируемые – работа ИМ рабочей машины с одной рабочей скоростью, координаты электропривода изменяются только из-за возмущающих воздействий;
регулируемые – работа ИМ рабочей машины происходит с различными значениями координат электропривода (скорости, момента, тока, магнитного потока) или параметров силовой цепи двигателя (сопротивления);
программно-управляемые – управляемый в соответствии с заданной программой, например, электропривод с числовым программным управлением металлорежущих станков;
следящие – автоматически отслеживающий перемещение ИМ рабочей машины с заданной точностью с произвольно меняющимся задающим сигналом;
адаптивные – автоматически избирающий параметры регуляторов при изменении условий работы рабочей машины с целью выработки оптимального режима, например, по быстродействию.
Можно классифицировать электроприводы по роду передаточного механизма: