
- •Тема 1. Пожарная безопасность
- •1 Вопрос. Пожарная опасность производственных объектов
- •Пожарная опасность производственных объектов
- •Классификация зданий, сооружений и строений но пожарной опасности
- •Защита от опасных факторов пожара и светового излучения
- •Система противопожарной защиты
- •Огнетушащие вещества
- •Основные виды огнетушащих веществ.
- •2 Вопрос. Безопасность на взрывоопасных объектах
- •Конденсированные взрывчатые вещества
- •Газовоздушные смеси
- •Пыль и пылевоздушные смеси
- •Мероприятия по обеспечению взрывобезопасности
Конденсированные взрывчатые вещества
Конденсированные ВВ принято делить на 4 группы:
-инициирующие - предназначены для возбуждения взрывчатого превращения в ВВ других групп (гремучая ртуть, азид свинца, тетразезен).
-бризантные - используемые в разрывных зарядах для боеприпасов, для средств разрушения при добыче полезных ископаемых и др. Преимущественным видом их превращения является детонация. К ним относятся однородные ВВ (тринитротолуол, нитроглицерин, пироксилин и др.) и неоднородные - механические смеси (аммониты, динамиты и др.);
-метательные (чаще всего это пороха, использующиеся в качестве метательных зарядов для огнестрельного оружия. Их взрывчатое превращение — дефлаграционное горение);
-пиротехнические составы.
Различают фугасное и бризантное действие конденсированных ВВ. Мерой фугасного действия служит объем воронки, образованной взрывом 1 кг ВВ.
Под бризантным действием понимают способность ВВ дробить соприкасающуюся среду. Эта способность зависит от детонационного давления и времени его действия.
Некоторые виды конденсированных ВВ.
Смеси.
Черный порох представляет собой смесь калиевой селитры (К}Юз) с углем. Эти вещества представляют собой порошки, смесь которых крайне опасна и возгорается со взрывом при малейшем воздействии теплом или трением. для получения требуемой скорости сгорания в смесь добавляется сера. Первым используемым на практике ВВ был черный порох. В настоящее время пороха используют в качестве метательных ВВ.
Ракетные твердые топлива относятся к тому же классу ВВ, что и пороха. Существует большое количество отличающихся по своему составу смесей, используемых в качестве ракетных топлив. Их основными компонентами являются: порошки металлов (А1, Ве, В, Мg) или их гидридов (АlН3, LiН, МgН ), окислители (например перхлорат аммония - NH3С1О4), нитраты (например нитрат калия - КNО3) и др. составляющие.
Аммониты представляют собой довольно большую группу веществ, широко используемых в промышленности (горнодобывающей, строительной и др. отраслях) и относящихся к классу бризантных ВВ. Как правило это смеси окислителя (аммониевой селитры - с органическими веществами (угольная или мучная пыль, торф, опилки) - динамоны, с порошками металлов (например алюминия) -аммонал, с тротилом - аматол, и др.
Однородные ВВ.
Наибольшее распространение в качестве таких ВВ получили органические нитросоединения.
Пироксилин и бездымный порог. Пироксилин (азотнокислый эфир целлюлозы или нитрат целлюлозы - С6Н7О2(ОNО2)3) получается при нитровании целлюлозы (хлопка) азотной кислотой. Внешне сохраняет вид волокон хлопка с повышенной хрупкостью. В настоящее время используется как сырье для изготовления баллистных порохов. Бездымный порох используется в качестве топлива реактивных снарядов для “Катющ” и минометов.
Гексоген (циклотриметилентринитроамин - (СН2NО2)3) и тротил (тринитротолуол - С6Н2СН3NО2) 3) относятся к классу бризантных ВВ и используются для начинки головных частей боеприпасов.
Газовоздушные смеси
Газовоздушные смеси (ГВС) образуются на ряде производств в нормальных или аварийных условиях и могут стать источником очень мощных взрывов. Наиболее опасны взрывы смесей с воздухом углеводородных газов (метана, пропана, бутилена, бутана, этилена и др.), а также паров воспламеняющихся жидкостей.
Взрывы ГВС могут происходить во внутренних полостях оборудования и трубопроводов, в помещениях (зданиях) в результате утечки газа, в емкостях для хранения и транспортировки взрыво- и пожароопасных веществ (резервуарах, газгольдерах, цистернах, грузовых отсеках танкеров) или на открытом пространстве при разрушении газопроводов, разливе и испарении жидкостей. Взрывы горючих газов с воздухом с тяжелыми последствиями происходят на шахтах.
Вероятность взрыва ГВС и его опасность определяются:
-пределами взрывной концентрации паров жидкостей и газов (при которых может возникнуть детонация) в процентах к объему ГВС, например, пропан 3-7%; пропилен 3.5-8.5%; этан 4.0-9.2%;
-температурой воспламенения - нижним пределом температуры, при которой возможно их воспламенение от постороннего источника зажигания (ацетон -18°С, спирт 13°С, бензол -1 1°С);
-плотностью паров и газов по отношению к плотности воздуха ( ацетон 2, ацетилен 0,9, метан 0,55, бутан 2 );
-температурой самовоспламенения ( ацетон 610°С, бензин 150°С, этиловый спирт 465°С);
-минимальной энергией зажигания или эквивалентом критической энергии электрической искры, необходимой для инициирования детонации.
Вероятность взрыва ГВС зависит от целого ряда обстоятельств. Статистика показывает, что при авариях с образованием облака ГВС на открытом пространстве, случаи взрыва, случаи возникновения только горения (пожаров) и случаи отсутствия воспламенения равновероятны.
Воспламенение облака ГВС происходит при наличии источника зажигания. Первоначально скорость распространения пламени относительно не велика и составляет для большинства углеводородных газов 0.32-0.40 м/с. При столь малых скоростях горения образования взрывной волны не происходит. Однако в реальных условиях на процесс горения оказывают влияние множество факторов, вызывающих турбулизацию фронта пламени и ускорение его распространения.
Применительно к случайным промышленным взрывам при достижении скоростей распространения пламени 100-300 м/с возникает дефлаграционное горение, при котором генерируются взрывные волны с максимальным избыточным давлением 20-100 кПа. Продолжительность горения до достижения взрывного режима для газов составляет около 0.Iс. При дальнейшем ускорении горения дефлаграционые процессы могут перерасти в детонационные, скорость распространения которых значительно превышает скорость звука в воздухе и достигает 1-5 км/с.
Переходу к детонации способствуют различные препятствия на пути распространения пламени (строения , предметы, пересеченная местность). детонация ГВС может произойти и без стадии дефлаграционного горения, однако в этом случае необходим соответствующий источник энергетического воздействия (достаточный электрический разряд, взрыв детонатора и др.).
При больших объемах горючих газовых смесей, наличии источников турбулизации фронта пламени и отражении детонационной волны от препятствий давление за очень короткий промежуток времени (~мс) достигает высоких значений (~1.5 МПа).