Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Protsessy_i_apparaty.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
247.78 Кб
Скачать

Перемешивание материалов

Процесс перемешивания применяют для получения однородных смесей: растворов, эмульсий, суспензий. В результате перемешивания получают смесь, которую используют в качестве конечного продукта или реагента для других стадий технологического процесса.

Для проведения процесса перемешивания используют следующие основные способы:

1) механический, при котором перемешивание осуществляют различными вращающимися устройствами;

2) барботажный, осуществляемый пропусканием газа через слой жидкости;

3) гидравлический, осуществляемый смешением потоков при их совместном движении в канале или при перекачивании перемешиваемых сред насосом. Используемые для процесса перемешивания аппараты называют смесителями.

МЕХАНИЧЕСКОЕ ПЕРЕМЕШИВАНИЕ

При механическом перемешивании интенсивное движение сред в аппарате осуществляется специальным устройством, получающим вращательное или более сложное движение от внешнего привода.

Механические смесители можно разделить на лопастные, пропеллерные и турбинные.

Лопастные мешалки имеют одну или несколько плоских вертикальных пластин, укрепленных на вертикальном валу (рис. XIX-1). Такие лопасти сообщают жидкости в основном вращательное движение. Чтобы обеспечить перемещение жидкости в вертикальном направлении, устанавливают также наклонные лопасти под углом 45º.

Рис. XIX-1. Лопастная мешалка

Для перемешивания жидкости во всем объеме применяют рамные мешалки (рис. XIX-3). Перемешивающее устройство таких смесителей представляет собой плоскую рамную конструкцию.

Рис. XIX-3. Рамная мешалка.

В тех случаях, когда необходимо исключить отложение осадков на стенках аппарата или улучшить теплопередачу через стенку, применяют якорные мешалки (рис. XIX-4). Конфигурация лопастей такого смесителя повторяет конфигурацию корпуса аппарата, что обеспечивает высокую турбулентность потока вблизи стенок аппарата. Якорная мешалка обеспечивает большую турбулентность и исключает образование осадка.

Рис ХIХ-4 Якорная мешалка

Пропеллерные мешалки применяют для интенсивного перемешивания во всем объеме, обеспечиваемого внутренней рециркуляцией жидкости (рис. XIX-5). Смесительное устройство этого типа выполнено в виде винта с двумя или большим числом лопастей. Для упорядочения циркуляции жидкости в корпусе аппарата пропеллер устанавливают в направляющую трубу.

Турбинные мешалки имеют лопастное колесо (турбину) с прямыми или загнутыми назад лопатками открытого или закрытого типа (рис. XIX-6). Турбинное колесо закрытого типа имеет специальный направляющий аппарат по типу насосного агрегата, обеспечивающего интенсивное движение жидкости в виде струй от центра колеса к его периферии.

Рис. 7-8. Быстроходные мешалки:

а-пропеллерная; б-двухлопастная; в-трехлопастная; г-турбинная открытая; д-турбинная закрытая; е-фрезерная

Быстроходные лопастные, турбинные, пропеллерные мешалки (рис. 7-8) различаются способностью создавать осевое циркуляционное течение. В аппаратах без внутренних устройств эти мешалки обеспечивают насосный эффект, вдвое превышающий насосный эффект обычных мешалок .

Следует отметить, что целесообразность использования мешалок тех или иных конструкций часто определяется особенностями технологии их изготовления. Например, при гуммировании или эмалировании мешалок наличие острых углов и кромок препятствует образованию надежного покрытия. Для гуммирования удобны лопастные мешалки, а для эмалирования - мешалки из сплющенных труб. За последние годы из новых конструкций мешалок в практику перемешивания прочно вошли только эмалированные мешалки из сплошных труб и фрезерные (рис. 7-8, ё). Фрезерная мешалка представляет собой диск с лопастями в форме зубцов. Она обеспечивает высокую разность скоростей лопастей мешалки и потока обтека­ющей их жидкости.

БАРБОТАЖНОЕ ПЕРЕМЕШИВАНИЕ

Этот способ перемешивания применяют для маловязких жидкостей. В качестве перемешивающего агента используют воздух, водяной пар, азот и другие газы. При перемешивании этим способом в нижней части аппарата устанавливают барботер—устройство, обеспечивающее распределение газа (пара) по площади поперечного сечения аппарата (рис. XIX-8). Обычно в качестве барботера используют перфорированные трубы. Выходное сечение отверстий для выхода газа должно быть меньше сечения коллектора в несколько десятков раз, чтобы обеспечить достаточное сопротивление на выходе газа в жидкость и его более равномерное распределение по отдельным отверстиям. Желательно упорядочить движение жидкости, создавая восходящий поток в центральной части аппарата и нисходящий (опускной) поток у стенок аппарата. Для этого в центре аппарата необходимо установить специальную подъемную трубу.

i ' -.ill' '. .1-

При использовании того или иного газа в качестве барботирующего агента необходимо учитывать возможность образования взрывоопасных смесей, а также взаимодействия перемешиваемого продукта с барботирующим газом.

ГИДРАВЛИЧЕСКИЙ СПОСОБ ПЕРЕМЕШИВАНИЯ

При гидравлическом способе перемешивания используют диафрагмовые, инжекторные и циркуляционные смесители.

Диафрагмовые смесители (рис. XIX-9) представляют собой систему диафрагм, установленных в трубопроводе, по которому перекачиваются смешиваемые жидкости. При прохождении потока через отверстия диафрагм происходит его турбулизация, приводящая к интенсивному перемешиванию перекачиваемых жидкостей.

В инжекторных смесителях (рис. XIX-10) одна из жидкостей с большой скоростью проходит через сопла, создавая разрежение окружающем сопла пространстве. Сюда подсасывается вторая жидкость, которая интенсивно перемешивается с первой. Скорость жидкости в соплах должна быть достаточно большой, чтобы обеспечить необходимую подачу второй жидкости.

.

Рис. XIX-10. Инжекторный многотрубный смеситель

Циркуляционное перемешивание (рис. XIX-11) широко применяют в различных технологических системах. Циркуляционный насос забирает жидкость из резервуара (аппарата) и возвращает ее обратно в тот же сосуд. Поскольку насос может обеспечить высокие скорости движения жидкости (более 1 м/с) и необходимый объемный расход, представляется возможность достаточно быстро перемешать соответствующие потоки или обеспечить необходимые условия для протекания тепло- и массообменных процессов.

Рис. XIX-11. Смеситель циркуляционного типа:

1— циркуляционный насос; 2 — резервуар.

Специальные методы перемешивания. Наряду с аппаратами традиционной конструкции в промышленности используют также аппараты или перемешивающие устройства специальных конструк­ций. К ним можно отнести устройства для вибрационного и пульсационного перемешивания.

Вибрационные мешалки выполняют в форме дисков, закрепленных на вертикальных штангах и совершающих возвратно-поступательное движение. Пульсационное перемешивающее устройство представляет собой камеру с распределительной полостью и системой сопел, погруженных в аппарат. Эта камера соединена с пульсатором-устройством, генерирующим пульсации давления газа.

Центробежный насос

Центробежный насос (Рис.1) состоит из корпуса, имеющего спиральную форму, и расположенного внутри жестко закрепленного колеса, состоящего из двух дисков, с закрепленными между ними лопастями. Они отогнуты от радиального направления в сторону противоположную той, в какую направлено вращение колеса. Соединение насоса с трубопроводами, напорным и всасывающим, производится через патрубки.

Принцип действия центробежных насосов заключается в следующем: в наполненном водой корпусе и всасывающем трубопроводе приводится во вращение рабочее колесо. Возникающая при его вращении центробежная сила приводит к вытеснению воды от центра колеса к его периферийным участкам. Там создается повышенное давление, которое начинает вытеснять жидкость в напорный трубопровод. Понижение давления в центре рабочего колеса вызывает поступление жидкости в насос через всасывающий водопровод. Таким образом осуществляется работа по непрерывной подаче жидкости центробежным насосом.

Рисунок 1 Устройство и принцип действия центробежного насоса

Центробежные насосы могут иметь одно или несколько рабочих колес, называются они соответственно — одноступенчатыми и многоступенчатыми. Не зависимо от количества рабочих колес, принцип действия центробежного насоса остается тем же — перемещение жидкости вызывает центробежная сила, вызванная вращающимся рабочим колесом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]