
- •1. Классическое определение вероятности. Непосредственное вычисление. Статистическая оценка вероятности.
- •2. Алгебра событий. Вероятность противоположного признака.
- •3. Условная вероятность. Зависимые и независимые признаки.
- •4. Вероятность произведения двух и более признаков.
- •5. Вероятность суммы двух и более слагаемых. Совместные и несовместные признаки.
- •6. Элементы комбинаторики. Размещения, перестановки, сочетания
- •7.Геометрические вероятности. Аксиоматическое определение вероятности.
- •8. Формулы полной вероятности и Байеса.
- •9. Повторные независимые испытания. Формула Бернулли.
- •10. Формула Пуассона и локальная теорема Лапласа и их применение.
- •11.Интегральная теорема Лапласа. Работа с таблицами.
- •12.Понятие случайной величины. Дискретные величины. Ряд распределения вероятностей.
- •13. Математическое ожидание и его свойства.
- •14. Дисперсия и ее свойства.
- •15. Ковариация и ее свойства. Коррелированность и зависимость случайных величин.
- •16. Непрерывные случайные величины. Функция плотности. Примеры
- •17. Дисперсия и другие моменты непрерывно случайной величины
- •18. Функция распределения и ее свойства.
- •20. Устойчивость средних. Неравенство Чебышева.
- •21. Закон больших чисел. Теорема Чебышева.
- •22. Теорема Бернулли, усиленный закон больших чисел Бореля и Колмогорова.
- •Усиленный закон больших чисел
- •23. Центральная предельная теорема и интегральная теорема Лапласа
- •24. Совместное распределение случайных величин
- •25. Коэффициент корреляции и его свойства
- •28. Статистические оценки
- •29. Начальные и центральные моменты и их статистические оценки. Сходимость оценок.
- •31. Доверительные интервалы для дисперсии и среднего квадратичного отклонения
- •32. Проверка статических гипотез, гипотезы о средних.
- •34. Однофакторный дисперсионный анализ
- •35. Критерий согласия Пирсона, проверка гипотезы о законе распределения
- •36. Регрессия, как условная средняя. Оценка погрешности метода наименьших квадратов Суть метода наименьших квадратов (мнк).
- •Графическая иллюстрация метода наименьших квадратов (мнк).
- •37. Простая линейная регрессия.
- •38. Проверка значимости коэффициента регрессии по Фишеру и Стьюденту
- •39. Понятие о случайных процессах. Цепи Маркова и теорема Маркова.
- •40. Цепи Маркова. Предельные вероятности состояний
6. Элементы комбинаторики. Размещения, перестановки, сочетания
Пусть
у нас есть множество из трех элементов
.
Какими способами мы можем выбрать из
этих элементов два?
.
Определение. Размещениями
множества из
различных
элементов по
элементов
называются
комбинации, которые составлены из
данных
элементов
по
элементов
и отличаются либо самими элементами,
либо порядком элементов.
Число
всех размещений множества из
элементов
по
элементов
обозначается через
(от
начальной буквы французского слова
“arrangement”, что означает размещение),
где
и
.
Теорема. Число размещений множества из элементов по элементов равно
Доказательство. Пусть
у нас есть элементы
.
Пусть
—
возможные размещения. Будем строить
эти размещения последовательно. Сначала
определим
—
первый элемент размещения. Из данной
совокупности
элементов
его можно выбрать
различными
способами. После выбора первого
элемента
для
второго элемента
остается
способов
выбора и т.д. Так как каждый такой выбор
дает новое размещение, то все эти выборы
можно свободно комбинировать между
собой. Поэтому имеем:
Пример. Сколькими способами можно составить флаг, состоящий из трех горизонтальных полос различных цветов, если имеется материал пяти цветов?
Решение. Искомое число трехполосных флагов:
Определение. Перестановкой множества из элементов называется расположение элементов в определенном порядке.
Так, все различные перестановки множества из трех элементов — это
Очевидно,
перестановки можно считать частным
случаем размещений при
.
Число
всех перестановок из
элементов
обозначается
(от
начальной буквы французского слова
“permutation”, что значит “перестановка”,
“перемещение”). Следовательно, число
всех различных перестановок вычисляется
по формуле
Пример. Сколькими способами можно расставить 8 ладей на шахматной доске так, чтобы они не били друг друга?
Решение. Искомое число расстановки 8 ладей
по
определению!
Определение. Сочетаниями
из
различных
элементов по
элементов
называются комбинации, которые составлены
из данных
элементов
по
элементов
и отличаются хотя бы одним элементом
(иначе говоря,
-элементные
подмножества данного множества
из
элементов).
Как
видим, в сочетаниях в отличие от размещений
не учитывается порядок элементов. Число
всех сочетаний из
элементов
по
элементов
в каждом обозначается
(от
начальной буквы французского слова
“combinasion”, что значит “сочетание”).
Числа
Все
сочетания из множества
по
два —
.
.
Свойства чисел
1.
.
Действительно,
каждому
-элементному
подмножеству данного
элементного
множества соответствует одно и только
одно
-элементное
подмножество того же множества.
2.
.
Действительно,
мы можем выбирать подмножества
из
элементов
следующим образом: фиксируем один
элемент; число
-элементных
подмножеств, содержащих этот элемент,
равно
;
число
-элементных
подмножеств, не содержащих этот элемент,
равно
.
7.Геометрические вероятности. Аксиоматическое определение вероятности.
Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности – вероятности попадания точки в область (отрезок, часть плоскости и т.д.)
Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L. В этих предположениях вероятность попадания точки на отрезок l определяется равенством
P=длина l / длина L
Пример 1. На отрезок ОА длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший из отрезков ОВ и ВА имеет длину, большую L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.
Решение. Разобьем отрезок ОА точками С и D на 3 равные части. Требование задачи будет выполнено, если точка В(х) попадет на отрезок CD длины L/3. Искомая вероятность:
Р = (L/3)/L = 1/3.
Пусть плоская фигура g составляет часть плоской фигуры G. На фигуру G наудачу брошена точка. Это означает выполнение следующих предположений: брошенная точка может оказаться в любой точке фигуры G,
вероятность попадания брошенной точки на фигуру g пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G, ни от формы g. В этих предположениях вероятность попадания точки в фигуру g определяется равенством:
Р = Площадь g/Площадь G.
Пример 2. На плоскости начерчены две концентрическuе окружности, радиусы которых 5 и 10 см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения относительно большого круга.
Решение. Площадь кольца (фигуры g)
Sg = π (102-52) = 75 π.
Площадь большого круга (фигуры G)
SG= π102= 100 π.
Искомая вероятность
Р = 75 π /(100 π) =0,75.
Аксиоматическое определение вероятности.
Определение. Пусть дано пространство элементарных исходов Ω. Пусть функция Р(А) определена на элементах этого пространства. Функция Р(А) называется вероятностью, если выполняются следующие свойства(аксиомы):
1) аксиома положительности: Р(А) ≥ 0 " А (каждому событию А соответствует положительное число).
2) аксиома нормированности: Р(Ω) = 1 (вероятность достоверного = 1)
3) аксиомой аддитивности: для несовместных событий Р(А + В) = Р(А) + Р(В). (Вероятность объединения двух несовместных событий равна сумме вероятностей этих событий)
Будем также использовать обобщение свойства 3:
Пусть
А1 ,
А2,
…, Аn –
счетное множество попарно несовместных
событий, т.е Аi ∙
Аj =
Ø при i ≠ j. Тогда