
- •1 Обработка металлов давлением. Упругая и пластическая деформация. Физические основы и классификация обработки металлов давлением. Волочение. Сущность процесса и оборудование.
- •2 Сущность процесса сварки. Классификация способов сварки. Современные способы сварки.
- •3 Технология изготовления изделий из пластмасс. Литье пластмасс при низком давлении. Особенности изготовления изделий из пластмасс.
- •4 Литейные свойства сплавов. Жидкотекучесть сплавов. Способы изготовления отливок. Литье в кокиль. Сущность способа. Типы кокилей
- •5 Задачи создания малоотходных и ресурсосберегающих технологий. Современные проблемы машиностроения.
- •6 Технология изготовления резиновых изделий
- •7 Физическая сущность процесса резания. Обработка заготовок на сверлильных станках. Применяемый инструмент и оборудование. Материалы для изготовления сверл.
- •8 Методы получения металлических порошков. Способы получения изделий из порошковых и композиционных материалов
- •9 Составить операционную карту механической обработки детали типа втулки
- •10 Основные операции ковки. Оборудование и инструмент процессов ковки и штамповки
- •11 Прокатка как один их важных способов обработки металлов давлением. Технология получения бесшовных труб. Продукция прокатного производства
- •12 Проблемы литейного производства. Пути совершенствования методов литья. Современные способы получения отливок
- •13 Виды инструментов для обработки резанием. Материалы для инструментов. Виды режущих инструментов
- •По применению: Ручной режущий инструмент, Машинный режущий инструмент, Машинно-ручной режущий инструмент По способу крепления: Насадной режущий инструмент, Хвостовой режущий инструмент
- •14 Горячая объемная штамповка. Виды штампов. Расчет массы поковки при штамповке
- •15 Прессование. Сущность процесса прессования. Схема прессования
- •16 Составление карты технологической обработки литья.
- •17 Нагрев заготовок перед обработкой давлением. Пластичность металлов и сплавов
- •Пластичность – свойство твердых тел необратимо деформироваться под действием механических нагрузок.
- •18 Листовая штамповка. Виды заготовок, оборудование, технологическая схема
- •Вырубной штамп. Схема установки заготовки.
- •1.Листовая штамповка. Виды заготовок, оборудование, технологическая схема
- •2.Составление карты технологического процесса штамповки. Операции штамповки.
- •3.Особенности сварки сталей, чугунов, цветных металлов и их сплавов
- •4.Физико-химические процессы получения стали. Производство стали в электродуговых печах
- •5.Геометрия режущего инструмента. Плоскости и углы режущих инструментов. Операционная карта обработки металлов резанием. Шлифовальные круги.
- •6.Напряжение в отливках и склонность к образованию трещин. Дефекты отливок.
- •7.Физическая сущность процесса резания. Тепловыделение при резании
- •8.Доменный процесс. Физико-химические процессы получения чугуна в доменных печах.
1 Обработка металлов давлением. Упругая и пластическая деформация. Физические основы и классификация обработки металлов давлением. Волочение. Сущность процесса и оборудование.
Обработкой металлов давлением называют группу технологических процессов, в результате которых происходит формоизменение заготовок без нарушения их целостности, т. е. пластической деформацией под влиянием. приложенных внешних сил. Основным признаком обработки давлением является пластическая деформация обрабатываемого материала, в результате которой не только изменяется форма заготовки, но изменяются физические и механические свойства исходного металла. В народном хозяйстве металлы и сплавы используются для изготовления фасонных деталей, листов, труб и профилей различной формы. В зависимости от формы и массы изделий, свойств обрабатываемого материала, типа производства применяют шесть основных видов обработки давлением: прокатку, прессование, волочение, ковку, объемную штамповку и листовую штамповку.
Упругая деформация. Упругой называют деформацию, влияние которой на форму, структуру и свойства тела полностью устраняется после прекращения действия внешних сил. Упругая деформация не вызывает заметных остаточных изменений в структуре и свойствах металла; под действием приложенной нагрузки происходит незначительное, полностью обратимое смещение атомов, или поворот блоков кристалла. Поэтому после снятия нагрузки смещенные атомы вследствие действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние, и кристаллы приобретают первоначальную форму и размеры.
При достижении касательными напряжениями предела или порога упругости деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации. Часть же деформации, которую называют пластической, остается.
Пластическая деформация в кристаллах может осуществляться скольжением и двойникованием. Скольжение - смещение отдельных частей кристалла - одной части относительно другой происходит под действием касательных напряжений, когда эти напряжения в плоскости и в направлении скольжения достигают определенной критической величины.
Схема упругой и пластической деформаций металла с кубической структурой, подвергнутого действию напряжений сдвига , показана на рис.3.3,а.
Скольжение в кристаллической решетки протекает по плоскостям и направлениям с наиболее плотной упаковкой атомов, где сопротивление сдвигу () наименьшее. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т.е. связь между ними наименьшая. Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической деформации.
Пластическая деформация металлов с плотноупакованными решетками К12 и Г12, кроме скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования (рис.3.3,б). Двойникование подобно скольжению сопровождается прохождением дислокации сквозь кристалл
Сущность процесса волочения заключается в протягивании заготовок через сужающееся отверстие (фильеру) в инструменте, называемом волокой. Конфигурация отверстия определяет форму получаемого профиля. Волочением получают проволоку диаметром 0,002…4 мм, прутки и профили фасонного сечения, тонкостенные трубы, в том числе и капиллярные. Волочение применяют также для калибровки сечения и повышения качества поверхности обрабатываемых изделий. Волочение чаще выполняют при комнатной температуре, когда пластическую деформацию сопровождает наклеп, это используют для повышения механических характеристик металла, например, предел прочности возрастает в 1,5…2 раза.Исходным материалом может быть горячекатаный пруток, сортовой прокат, проволока, трубы. Волочением обрабатывают стали различного химического состава, цветные металлы и сплавы, в том числе и драгоценные.
Основной инструмент при волочении – волоки различной конструкции. Волока работает в сложных условиях: большое напряжение сочетается с износом при протягивании, поэтому их изготавливают из твердых сплавов. Для получения особо точных профилей волоки изготавливают из алмаза.