
- •1. Введение в интеллектуальные системы.................................................................7
- •2. Разработка систем, основанных на знаниях ........................................................36
- •3. Теоретические аспекты инженерии знаний..........................................................55
- •4. Технологии инженерии знаний.............................................................................. 95
- •5. Новые тенденции и прикладные аспекты
- •6. Программный инструментарий разработки систем, основанных на знаниях............................................................................................................................194
- •7. Пример разработки системы, основанной на знаниях ................................….226
- •8. Представление данных и знаний в Интернете...................................................257
- •9. Интеллектуальные Интернет-технологии..........................................................300
- •1. Введение в интеллектуальные системы
- •1.1. Краткая история искусственного интеллекта
- •1.1.1. Предыстория
- •1.1.2. Зарождение нейрокибернетики
- •1.1.3. От кибернетики «черного ящика» к ии
- •1.1.4. История искусственного интеллекта в России
- •1.2. Основные направления исследований в области искусственного интеллекта
- •1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based systems)
- •1.2.2. Программное обеспечение систем ии (software engineering for Al)
- •1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural language processing)
- •1.2.4. Интеллектуальные роботы (robotics)
- •1.2.5. Обучение и самообучение (machine learning)
- •1.2.6. Распознавание образов (pattern recognition)
- •1.2.7. Новые архитектуры компьютеров (new hardware platforms and architectures)
- •1.2.8. Игры и машинное творчество
- •1.2.9. Другие направления
- •1.3. Представление знаний и вывод на знаниях
- •1.3.1. Данные и знания
- •1.3.2. Модели представления знаний
- •1.3.3. Вывод на знаниях
- •1.4. Нечеткие знания
- •1.4.1. Основы теории нечетких множеств
- •123456789 10 Рис. 1.7. Формирование нечетких множеств
- •1.4.2. Операции с нечеткими знаниями
- •1.5. Прикладные интеллектуальные системы
- •2. Разработка систем, основанных на знаниях
- •2.1. Введение в экспертные системы. Определение и структура
- •2.2. Классификация систем, основанных на знаниях
- •2.2.1. Классификация по решаемой задаче
- •2.2.2. Классификация по связи с реальным временем
- •2.2.3. Классификация по типу эвм
- •2.2.4. Классификация по степени интеграции с другими программами
- •2.3. Коллектив разработчиков
- •2.4. Технология проектирования и разработки
- •2.4.1. Проблемы разработки промышленных эс
- •2.4.2. Выбор подходящей проблемы
- •2.4.3. Технология быстрого прототипирования
- •2.4.4. Развитие прототипа до промышленной эс
- •2.4.5. Оценка системы
- •2.4.6. Стыковка системы
- •2.4.7. Поддержка системы
- •3. Теоретические аспекты инженерии знаний
- •3.1. Поле знаний
- •3.1.1. О языке описания поля знаний
- •3.1.2. Семиотическая модель поля знаний
- •3.1.3. «Пирамида» знаний
- •3.2. Стратегии получения знаний
- •3.3. Теоретические аспекты извлечения знаний
- •3.3.1. Психологический аспект
- •3.3.2. Лингвистический аспект
- •3.3.3. Гносеологический аспект извлечения знаний
- •3.4. Теоретические аспекты структурирования знаний
- •3.4.1. Историческая справка
- •3.4.2. Иерархический подход
- •3.4.3. Традиционные методологии структурирования
- •3.4.4. Объектно-структурный подход (осп)
- •4. Технологии инженерии знаний
- •4.1. Классификация методов практического извлечения знаний
- •4.2. Коммуникативные методы
- •4.2.1. Пассивные методы
- •4.2.2. Активные индивидуальные методы
- •4.2.3. Активные групповые методы
- •4.3. Текстологические методы
- •4.4. Простейшие методы структурирования
- •4.4.1. Алгоритм для «чайников»
- •4.4.2. Специальные методы структурирования
- •4.5. Состояние и перспективы автоматизированного приобретения знаний
- •4.5.1. Эволюция систем приобретения знаний
- •4.5.2. Современное состояние
- •4.6. Примеры методов и систем приобретения знаний
- •4.6.1. Автоматизированное структурированное интервью
- •4.6.2. Имитация консультаций
- •4.6.3. Интегрированные среды приобретения знаний
- •4.6.4. Приобретение знаний из текстов
- •5. Новые тенденции и прикладные аспекты инженерии знаний
- •5.1. Латентные структуры знаний и психосемантика
- •5.1.1. Семантические пространства
- •5.1.2. Методы многомерного шкалирования
- •5.1.3. Использование метафор для выявления «скрытых» структур знаний
- •5.2. Метод репертуарных решеток
- •5.2.1. Основные понятия
- •5.2.2. Методы выявления конструктов Метод минимального контекста
- •5.2.3. Анализ репертуарных решеток
- •5.2.4. Автоматизированные методы
- •5.3. Управление знаниями
- •5.3.1. Что такое «управление знаниями»
- •5.3.2. Управление знаниям и корпоративная память
- •5.3.3. Системы omis
- •5.3.4. Особенности разработки omis
- •5.4. Визуальное проектирование баз знаний как инструмент познания
- •5.4.1. От понятийных карт к семантическим сетям
- •5.4.2. База знаний как познавательный инструмент
- •5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- •5.5.1. Гипертекстовые системы
- •5.5.2. От мультимедиа к гипермедиа
- •5.5.3. На пути к адаптивным обучающим системам
- •6. Программный инструментарий разработки систем, основанных на знаниях
- •6.1. Технологии разработки программного обеспечения - цели, принципы, парадигмы
- •6.1.1. Основные понятия процесса разработки программного обеспечения (по)
- •6.1.2. Модели процесса разработки по
- •6.1.3. Инструментальные средства поддержки разработки систем по
- •6.2. Методологии создания и модели
- •6.3. Языки программирования для ии и языки представления знаний
- •6.4. Инструментальные пакеты для ии
- •6.5. WorkBench-системы
- •7. Пример разработки системы, основанной на знаниях
- •7.1. Продукционно-фреймовый япз pilot/2
- •7.1.1. Структура пилот-программ и управление выводом
- •7.1.2. Декларативное представление данных и знаний
- •7.1.3. Процедурные средства языка
- •7.2. Психодиагностика – пример предметной области для построения экспертных систем
- •7.2.1. Особенности предметной области
- •7.2.2. Батарея психодиагностических эс «Ориентир»
- •7.3. Разработка и реализация
- •7.3.1. Архитектура системы и ее база знаний
- •7.3.2. Общение с пользователем и опрос испытуемых
- •7.3.3. Вывод портретов и генерация их текстовых представлений
- •7.3.4. Помощь и объяснения в эс «Cattell»
- •8. Представление данных и знаний в Интернете
- •8.1. Язык html и представление знаний 8.1.1. Историческая справка
- •8.1.2. Html - язык гипертекстовой разметки Интернет-документов
- •8.1.3. Возможности представления знаний на базе языка html
- •8.2. Онтологии и онтологические системы
- •8.2.1. Основные определения
- •8.2.2. Модели онтологии и онтологической системы
- •8.2.3. Методологии создания и «жизненный цикл» онтологий
- •8.2.4. Примеры онтологий
- •8.3. Системы и средства представления онтологических знаний
- •8.3.1. Основные подходы
- •8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- •Средства спецификации онтологий в проекте Ontobroker
- •Формализм запросов
- •Формализм представления и машина вывода
- •Аннотация Web-страниц онтологической информацией
- •8.3.3. Проект shoe - спецификация онтологий и инструментарий Общая характеристика проекта
- •Спецификации онтологий и инструментарий shoe
- •Формализм представления и машина вывода
- •Аннотация Web-документов на базе онтологии
- •Формализм запросов
- •8.3.4. Другие подходы и тенденции
- •9. Интеллектуальные Интернет-технологии
- •9.1. Программные агенты и мультиагентные системы
- •9.1.1. Историческая справка
- •9.1.2. Основные понятия
- •9.2. Проектирование и реализация агентов и мультиагентных систем
- •9.2.1. Общие вопросы проектирования агентов и mac
- •9.2.2. Инструментарий AgentBuilder
- •9.2.3. Система Bee-gent
- •9.3. Информационный поиск в среде Интернет
- •9.3.1. Машины поиска
- •9.3.2. Неспециализированные и специализированные поисковые агенты
- •9.3.3. Системы интеллектуальных поисковых агентов
- •Autonomy и Web compass - системы интеллектуального поиска и обработки информации
- •Проект системы marri
- •Прототип системы OntoSeek
- •(Onto)2 - агент поиска и выбора онтологий
7.2.2. Батарея психодиагностических эс «Ориентир»
Представления человека о себе и система его ценностей могут быть выявлены с помощью различных психологических методов, однако возможность влиять на их формирование в ситуации консультации очень ограничена. Обычно особенности психики исследуются в трех направлениях - анализ перцептивных особенностей, исследование интеллекта и личностных особенностей. Факторов, влияющих на построение рекомендаций, так много, что для того, чтобы прийти к какому-либо заключению (например, о выборе профессии), необходимо провести полное психологическое обследование с целью получения психологического портрета испытуемого, обеспечить сопоставление его психологических черт и требований, которые предъявляет желаемая сфера деятельности, и сообщить ему полученные результаты. При этом под результатами имеется в виду не однозначная короткая информация о том, подходит ли избранная профессия человеку. Испытуемому необходимо сообщить его психологический портрет, какие перспективы открывают перед ним его психологические черты в плане выбора деятельности, и о том, как они сочетаются с его планами на будущее. Для этого, очевидно, нужно использовать не один тест, а сбалансированную систему тестов.
Содержательные классификации тестов - это, в первую очередь, классификации по психическим функциям, и, практически, они совпадают с классификацией способностей по тому же основанию. С этой точки зрения тесты делятся на сенсомоторные; перцептивные; тесты на особенности внимания; мнестические (особенности памяти); тесты на интеллектуальный уровень и интеллектуальные особенности; личностные тесты. Каждый из этих классов тестов может быть, в свою очередь, разделен на подклассы в зависимости от конкретной особенности им измеряемой [Анастази, 1982].
По стимульному материалу тесты делятся на вербальные и невербальные. По сути, компьютеризация никак не связана с этой характеристикой методики. Но зрительное изображение, сложное по форме и/или цвету, может привести к трудностям, как на этапе компьютеризации методики, так и при тиражировании ее на разные типы ЭВМ и, в частности, дисплеев.
Личностные тесты направлены на выявление присущих человеку личностных черт, осознаваемых и бессознательных особенностей и проблем. Многие из них (например, прожективные) относятся к объективным нестандартизованным тестам. Но с точки зрения компьютерного тестирования способностей гораздо больший интерес представляют личностные опросники, особенно опросники, охватывающие широкий круг личностных черт и особенностей личности. К наиболее широко используемым личностным опросникам (в том числе и в нашей стране) относятся Миннесотский мультифазный личностный опросник (MMPI), 16-фак-торный тест Кеттелла, опросник УСК (уровень субъективного контроля), опросник Айзенка и некоторые другие.
Количество тестов, используемых в конкретной работе для психодиагностики, может быть различным. Возможно, для диагностики одной, узконаправленной способности в некоторых случаях можно ограничиться и одним тестом. Однако почти всегда широта и значимость диагностической задачи заставляют использовать тест, позволяющий определить сразу несколько показателей, или батарею (многофакторных) тестов.
Учитывая вышесказанное, в рамках проекта «Ориентир», выполнявшегося совместно специалистами из ВЦ РАН (Москва) и СПбГТУ (Санкт-Петербург) в середине 90-х годов и связанного с созданием программных средств, обеспечивающих функционирование соответствующей интеллектуальной интерактивной среды, была разработана и реализована батарея ЭС, работающих на получение следующих общих результатов:
1. Психологическая диагностика основных свойств личности, мотивации, интеллекта, темперамента с получением психологического заключения в виде текста на естественном языке.
2. Прогнозирование профессиональной успешности в различных видах деятельности с учетом возраста, пола и психологических особенностей испытуемых.
3. Выдача рекомендаций по созданию научных, творческих, учебных и производственных малых коллективов на основе диагностики ролевой и психологической совместимости отдельных членов коллектива.
4. Профессиональный подбор и отбор специалистов для переподготовки в рамках специального заказа.
5. Изучение психологических особенностей испытуемых с целью выбора наиболее подходящих методов обучения, средств адаптации, индивидуального подхода, способствующих профессиональному и личностному росту.
Отличительные особенности проекта были связаны с тем, что здесь в рамках единой интеллектуальной системы объединялись результаты, получаемые от отдельных диагностических ЭС различной модальности. Реализация проекта осуществлялась в среде Windows с использованием методов объектно-ориентированного проектирования и программирования, а базисом послужила технология разработки систем, основанных на знаниях.
Разработка батареи экспертных систем «Ориентир» предполагала, что здесь четко различается несколько задач. В рамках первой из них система должна обеспечить создание, коррекцию и сопровождение базы испытуемых, включая защиту от несанкционированного доступа к данным и знаниям. Вторая задача - управление вызовом и функционированием отдельных локальных ЭС, составляющих исполнительные блоки общей батареи. Последняя задача связывалась с функционированием экспертной системы «Профи», которая работает с базами знаний локальных ЭС. Учитывая вышесказанное, Н-диаграмма БЭС «Ориентир» может быть описана схемой, представленной на рис. 7.2.
Рис. 7.2. Н-диаграмма БЭС «Ориентир»
Здесь базовыми, обслуживающими все локальные ЭС, «задействованные» в общей системе, являются опции База и Тесты. Первая из них обеспечивает формирование и сопровождение баз данных и знаний испытуемых, а вторая - вызов локальных экспертных систем. Экранная форма основного цикла работы БЭС «Ориентир» представлена на рис. 7.3.
Рис.7.3. Экранная форма основного цикла работы БЭС «Ориентир»