
- •1. Введение в интеллектуальные системы.................................................................7
- •2. Разработка систем, основанных на знаниях ........................................................36
- •3. Теоретические аспекты инженерии знаний..........................................................55
- •4. Технологии инженерии знаний.............................................................................. 95
- •5. Новые тенденции и прикладные аспекты
- •6. Программный инструментарий разработки систем, основанных на знаниях............................................................................................................................194
- •7. Пример разработки системы, основанной на знаниях ................................….226
- •8. Представление данных и знаний в Интернете...................................................257
- •9. Интеллектуальные Интернет-технологии..........................................................300
- •1. Введение в интеллектуальные системы
- •1.1. Краткая история искусственного интеллекта
- •1.1.1. Предыстория
- •1.1.2. Зарождение нейрокибернетики
- •1.1.3. От кибернетики «черного ящика» к ии
- •1.1.4. История искусственного интеллекта в России
- •1.2. Основные направления исследований в области искусственного интеллекта
- •1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based systems)
- •1.2.2. Программное обеспечение систем ии (software engineering for Al)
- •1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural language processing)
- •1.2.4. Интеллектуальные роботы (robotics)
- •1.2.5. Обучение и самообучение (machine learning)
- •1.2.6. Распознавание образов (pattern recognition)
- •1.2.7. Новые архитектуры компьютеров (new hardware platforms and architectures)
- •1.2.8. Игры и машинное творчество
- •1.2.9. Другие направления
- •1.3. Представление знаний и вывод на знаниях
- •1.3.1. Данные и знания
- •1.3.2. Модели представления знаний
- •1.3.3. Вывод на знаниях
- •1.4. Нечеткие знания
- •1.4.1. Основы теории нечетких множеств
- •123456789 10 Рис. 1.7. Формирование нечетких множеств
- •1.4.2. Операции с нечеткими знаниями
- •1.5. Прикладные интеллектуальные системы
- •2. Разработка систем, основанных на знаниях
- •2.1. Введение в экспертные системы. Определение и структура
- •2.2. Классификация систем, основанных на знаниях
- •2.2.1. Классификация по решаемой задаче
- •2.2.2. Классификация по связи с реальным временем
- •2.2.3. Классификация по типу эвм
- •2.2.4. Классификация по степени интеграции с другими программами
- •2.3. Коллектив разработчиков
- •2.4. Технология проектирования и разработки
- •2.4.1. Проблемы разработки промышленных эс
- •2.4.2. Выбор подходящей проблемы
- •2.4.3. Технология быстрого прототипирования
- •2.4.4. Развитие прототипа до промышленной эс
- •2.4.5. Оценка системы
- •2.4.6. Стыковка системы
- •2.4.7. Поддержка системы
- •3. Теоретические аспекты инженерии знаний
- •3.1. Поле знаний
- •3.1.1. О языке описания поля знаний
- •3.1.2. Семиотическая модель поля знаний
- •3.1.3. «Пирамида» знаний
- •3.2. Стратегии получения знаний
- •3.3. Теоретические аспекты извлечения знаний
- •3.3.1. Психологический аспект
- •3.3.2. Лингвистический аспект
- •3.3.3. Гносеологический аспект извлечения знаний
- •3.4. Теоретические аспекты структурирования знаний
- •3.4.1. Историческая справка
- •3.4.2. Иерархический подход
- •3.4.3. Традиционные методологии структурирования
- •3.4.4. Объектно-структурный подход (осп)
- •4. Технологии инженерии знаний
- •4.1. Классификация методов практического извлечения знаний
- •4.2. Коммуникативные методы
- •4.2.1. Пассивные методы
- •4.2.2. Активные индивидуальные методы
- •4.2.3. Активные групповые методы
- •4.3. Текстологические методы
- •4.4. Простейшие методы структурирования
- •4.4.1. Алгоритм для «чайников»
- •4.4.2. Специальные методы структурирования
- •4.5. Состояние и перспективы автоматизированного приобретения знаний
- •4.5.1. Эволюция систем приобретения знаний
- •4.5.2. Современное состояние
- •4.6. Примеры методов и систем приобретения знаний
- •4.6.1. Автоматизированное структурированное интервью
- •4.6.2. Имитация консультаций
- •4.6.3. Интегрированные среды приобретения знаний
- •4.6.4. Приобретение знаний из текстов
- •5. Новые тенденции и прикладные аспекты инженерии знаний
- •5.1. Латентные структуры знаний и психосемантика
- •5.1.1. Семантические пространства
- •5.1.2. Методы многомерного шкалирования
- •5.1.3. Использование метафор для выявления «скрытых» структур знаний
- •5.2. Метод репертуарных решеток
- •5.2.1. Основные понятия
- •5.2.2. Методы выявления конструктов Метод минимального контекста
- •5.2.3. Анализ репертуарных решеток
- •5.2.4. Автоматизированные методы
- •5.3. Управление знаниями
- •5.3.1. Что такое «управление знаниями»
- •5.3.2. Управление знаниям и корпоративная память
- •5.3.3. Системы omis
- •5.3.4. Особенности разработки omis
- •5.4. Визуальное проектирование баз знаний как инструмент познания
- •5.4.1. От понятийных карт к семантическим сетям
- •5.4.2. База знаний как познавательный инструмент
- •5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- •5.5.1. Гипертекстовые системы
- •5.5.2. От мультимедиа к гипермедиа
- •5.5.3. На пути к адаптивным обучающим системам
- •6. Программный инструментарий разработки систем, основанных на знаниях
- •6.1. Технологии разработки программного обеспечения - цели, принципы, парадигмы
- •6.1.1. Основные понятия процесса разработки программного обеспечения (по)
- •6.1.2. Модели процесса разработки по
- •6.1.3. Инструментальные средства поддержки разработки систем по
- •6.2. Методологии создания и модели
- •6.3. Языки программирования для ии и языки представления знаний
- •6.4. Инструментальные пакеты для ии
- •6.5. WorkBench-системы
- •7. Пример разработки системы, основанной на знаниях
- •7.1. Продукционно-фреймовый япз pilot/2
- •7.1.1. Структура пилот-программ и управление выводом
- •7.1.2. Декларативное представление данных и знаний
- •7.1.3. Процедурные средства языка
- •7.2. Психодиагностика – пример предметной области для построения экспертных систем
- •7.2.1. Особенности предметной области
- •7.2.2. Батарея психодиагностических эс «Ориентир»
- •7.3. Разработка и реализация
- •7.3.1. Архитектура системы и ее база знаний
- •7.3.2. Общение с пользователем и опрос испытуемых
- •7.3.3. Вывод портретов и генерация их текстовых представлений
- •7.3.4. Помощь и объяснения в эс «Cattell»
- •8. Представление данных и знаний в Интернете
- •8.1. Язык html и представление знаний 8.1.1. Историческая справка
- •8.1.2. Html - язык гипертекстовой разметки Интернет-документов
- •8.1.3. Возможности представления знаний на базе языка html
- •8.2. Онтологии и онтологические системы
- •8.2.1. Основные определения
- •8.2.2. Модели онтологии и онтологической системы
- •8.2.3. Методологии создания и «жизненный цикл» онтологий
- •8.2.4. Примеры онтологий
- •8.3. Системы и средства представления онтологических знаний
- •8.3.1. Основные подходы
- •8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- •Средства спецификации онтологий в проекте Ontobroker
- •Формализм запросов
- •Формализм представления и машина вывода
- •Аннотация Web-страниц онтологической информацией
- •8.3.3. Проект shoe - спецификация онтологий и инструментарий Общая характеристика проекта
- •Спецификации онтологий и инструментарий shoe
- •Формализм представления и машина вывода
- •Аннотация Web-документов на базе онтологии
- •Формализм запросов
- •8.3.4. Другие подходы и тенденции
- •9. Интеллектуальные Интернет-технологии
- •9.1. Программные агенты и мультиагентные системы
- •9.1.1. Историческая справка
- •9.1.2. Основные понятия
- •9.2. Проектирование и реализация агентов и мультиагентных систем
- •9.2.1. Общие вопросы проектирования агентов и mac
- •9.2.2. Инструментарий AgentBuilder
- •9.2.3. Система Bee-gent
- •9.3. Информационный поиск в среде Интернет
- •9.3.1. Машины поиска
- •9.3.2. Неспециализированные и специализированные поисковые агенты
- •9.3.3. Системы интеллектуальных поисковых агентов
- •Autonomy и Web compass - системы интеллектуального поиска и обработки информации
- •Проект системы marri
- •Прототип системы OntoSeek
- •(Onto)2 - агент поиска и выбора онтологий
5.2.4. Автоматизированные методы
Данный параграф посвящен обзору некоторых наиболее известных методов и систем приобретения знаний на основе метода репертуарных решеток, частично из работ [Осипов, 1990; Молокова, 1992; Осипов,1997].
Впервые автоматизированное создание репертуарных решеток и извлечение из экспертов конструктов было реализовано в системе PLANET [Gaines, Shaw, 1984; Shaw, Woodward, 1988]. Дальнейшим развитием системы PLANET является интегрированная среда KITTEN, поддерживающая ряд методов извлечения знаний. Буза Д. в системе ETS [Boose, 1985] использовал метод репертуарных решеток для выявления понятийной системы предметной области. Потомками ETS являются система NeoETS и интегрированная среда для извлечения экспертных знаний AQUINAS [Boose, Bradshaw, Shema, 1988].
Известно большое число прототипов ЭС, для создания которых использовалась ETS. Среди них:
1. Советчик по выбору инструментария для разработчиков ЭС.
2. Консультант по языкам программирования.
3. Анализатор геологических данных.
4. Советчик по отладке Фортран-программ.
5. Консультант по СУБД и др.
Однако область применения ETS ограничена извлечением экспертных знаний для таких несложных задач анализа, которые не требуют для своего решения процедурных, каузальных и стратегических знаний.
ETS взаимодействует с экспертом в диалоговом режиме, интервьюируя его и помогая анализировать создаваемую БЗ. В архитектуре ETS могут быть выделены подсистемы: извлечения элементов; выявления конструктов; построения репертуарной решетки; построения графа импликативных связей; генерации продукционных правил; тестирования БЗ; коррекции БЗ; генерации БЗ для различных инструментальных средств создания ЭС.
В диагностической системе MORE [Kahn, Nowlan, McDermott, 1985] использованы принципы, сходные с теми, которые лежат в основе обеих описанных выше систем. Здесь впервые использовано несколько различных стратегий интервью. Техника интервью, использованная в MORE, направлена на выявление следующих сущностей:
гипотезы - подтверждение которых имеет своим результатом диагноз;
симптомы - наблюдение которых приближает последующее принятие гипотезы;
условия - некоторое множество событий, которое не является непосредственно симптоматическим для какой-либо гипотезы, но событий;
которое может иметь диагностическое значение для некоторых других связи - соединение сущностей;
пути - выделенный тип связи, который соединяет гипотезы с симптомами.
В соответствии с этим в системе используются следующие стратегии интервью: дифференциация гипотез, различение симптомов, симптомная обусловленность, деление пути и некоторые другие.
Стратегия дифференциации гипотез направлена на поиск симптомов, которые обеспечивают более точное различие гипотез. Наиболее мощными в этом смысле являются те симптомы, которые наблюдаются при одном диагностируемом событии.
Стратегия различения симптомов выявляет специфические характеристики симптома, которые, с одной стороны, идентифицируют его как следствие некоторой гипотезы, с другой - противопоставляют другим.
Стратегия симптомной обусловленности направлена на выявление негативных симптомов, то есть симптомов, отсутствие которых имеет больший диагностический вес, чем их присутствие.
Стратегия деления пути обеспечивает нахождение симптоматических событий, которые лежат на пути к уже найденному симптому. Если такой симптом существует, то он имеет большее диагностическое значение, чем уже найденный.
В системе KRITON [Diderich, Ruhman, May, 1987] (см. п. 4.6.4) для приобретения знаний используются два источника: эксперт с его знаниями, полученными на практике; книжные знания, документы, описания, инструкции (эти знания хорошо структурированы и фиксированы традиционными средствами). Для извлечения знаний из первого источника в KRITON применена техника интервью, использующая стратегии репертуарной решетки разбиения на ступени. Стратегия разбиения на ступени направлена на выявление наследственной структуры предметной области. Акцент делается на выявлении структуры родовых и видовых понятий (супертипов). При этом типы, выявленные на очередном шаге работы стратегии, становятся базисом для последующего ее применения.
В системе применен прием переключения стратегий: если при работе стратегии репертуарной решетки при предъявлении тройки семантически связанных понятий эксперт не в состоянии назвать признак, отличающий два из них от третьего, система запускает стратегию разбиения на ступени и, задавая эксперту, вопросы о понятиях, связанных с предыдущими отношениями «род - вид», предпринимает попытку выяснения таксономической структуры этих понятий с целью выявления признаков, их различающих.
В России существенные результаты в применении репертуарных решеток в инженерии знаний были получены под руководством Г. С. Осипова в рамках проекта SIMER+MIR (см. п. 4.6.5).