
- •1. Введение в интеллектуальные системы.................................................................7
- •2. Разработка систем, основанных на знаниях ........................................................36
- •3. Теоретические аспекты инженерии знаний..........................................................55
- •4. Технологии инженерии знаний.............................................................................. 95
- •5. Новые тенденции и прикладные аспекты
- •6. Программный инструментарий разработки систем, основанных на знаниях............................................................................................................................194
- •7. Пример разработки системы, основанной на знаниях ................................….226
- •8. Представление данных и знаний в Интернете...................................................257
- •9. Интеллектуальные Интернет-технологии..........................................................300
- •1. Введение в интеллектуальные системы
- •1.1. Краткая история искусственного интеллекта
- •1.1.1. Предыстория
- •1.1.2. Зарождение нейрокибернетики
- •1.1.3. От кибернетики «черного ящика» к ии
- •1.1.4. История искусственного интеллекта в России
- •1.2. Основные направления исследований в области искусственного интеллекта
- •1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based systems)
- •1.2.2. Программное обеспечение систем ии (software engineering for Al)
- •1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural language processing)
- •1.2.4. Интеллектуальные роботы (robotics)
- •1.2.5. Обучение и самообучение (machine learning)
- •1.2.6. Распознавание образов (pattern recognition)
- •1.2.7. Новые архитектуры компьютеров (new hardware platforms and architectures)
- •1.2.8. Игры и машинное творчество
- •1.2.9. Другие направления
- •1.3. Представление знаний и вывод на знаниях
- •1.3.1. Данные и знания
- •1.3.2. Модели представления знаний
- •1.3.3. Вывод на знаниях
- •1.4. Нечеткие знания
- •1.4.1. Основы теории нечетких множеств
- •123456789 10 Рис. 1.7. Формирование нечетких множеств
- •1.4.2. Операции с нечеткими знаниями
- •1.5. Прикладные интеллектуальные системы
- •2. Разработка систем, основанных на знаниях
- •2.1. Введение в экспертные системы. Определение и структура
- •2.2. Классификация систем, основанных на знаниях
- •2.2.1. Классификация по решаемой задаче
- •2.2.2. Классификация по связи с реальным временем
- •2.2.3. Классификация по типу эвм
- •2.2.4. Классификация по степени интеграции с другими программами
- •2.3. Коллектив разработчиков
- •2.4. Технология проектирования и разработки
- •2.4.1. Проблемы разработки промышленных эс
- •2.4.2. Выбор подходящей проблемы
- •2.4.3. Технология быстрого прототипирования
- •2.4.4. Развитие прототипа до промышленной эс
- •2.4.5. Оценка системы
- •2.4.6. Стыковка системы
- •2.4.7. Поддержка системы
- •3. Теоретические аспекты инженерии знаний
- •3.1. Поле знаний
- •3.1.1. О языке описания поля знаний
- •3.1.2. Семиотическая модель поля знаний
- •3.1.3. «Пирамида» знаний
- •3.2. Стратегии получения знаний
- •3.3. Теоретические аспекты извлечения знаний
- •3.3.1. Психологический аспект
- •3.3.2. Лингвистический аспект
- •3.3.3. Гносеологический аспект извлечения знаний
- •3.4. Теоретические аспекты структурирования знаний
- •3.4.1. Историческая справка
- •3.4.2. Иерархический подход
- •3.4.3. Традиционные методологии структурирования
- •3.4.4. Объектно-структурный подход (осп)
- •4. Технологии инженерии знаний
- •4.1. Классификация методов практического извлечения знаний
- •4.2. Коммуникативные методы
- •4.2.1. Пассивные методы
- •4.2.2. Активные индивидуальные методы
- •4.2.3. Активные групповые методы
- •4.3. Текстологические методы
- •4.4. Простейшие методы структурирования
- •4.4.1. Алгоритм для «чайников»
- •4.4.2. Специальные методы структурирования
- •4.5. Состояние и перспективы автоматизированного приобретения знаний
- •4.5.1. Эволюция систем приобретения знаний
- •4.5.2. Современное состояние
- •4.6. Примеры методов и систем приобретения знаний
- •4.6.1. Автоматизированное структурированное интервью
- •4.6.2. Имитация консультаций
- •4.6.3. Интегрированные среды приобретения знаний
- •4.6.4. Приобретение знаний из текстов
- •5. Новые тенденции и прикладные аспекты инженерии знаний
- •5.1. Латентные структуры знаний и психосемантика
- •5.1.1. Семантические пространства
- •5.1.2. Методы многомерного шкалирования
- •5.1.3. Использование метафор для выявления «скрытых» структур знаний
- •5.2. Метод репертуарных решеток
- •5.2.1. Основные понятия
- •5.2.2. Методы выявления конструктов Метод минимального контекста
- •5.2.3. Анализ репертуарных решеток
- •5.2.4. Автоматизированные методы
- •5.3. Управление знаниями
- •5.3.1. Что такое «управление знаниями»
- •5.3.2. Управление знаниям и корпоративная память
- •5.3.3. Системы omis
- •5.3.4. Особенности разработки omis
- •5.4. Визуальное проектирование баз знаний как инструмент познания
- •5.4.1. От понятийных карт к семантическим сетям
- •5.4.2. База знаний как познавательный инструмент
- •5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- •5.5.1. Гипертекстовые системы
- •5.5.2. От мультимедиа к гипермедиа
- •5.5.3. На пути к адаптивным обучающим системам
- •6. Программный инструментарий разработки систем, основанных на знаниях
- •6.1. Технологии разработки программного обеспечения - цели, принципы, парадигмы
- •6.1.1. Основные понятия процесса разработки программного обеспечения (по)
- •6.1.2. Модели процесса разработки по
- •6.1.3. Инструментальные средства поддержки разработки систем по
- •6.2. Методологии создания и модели
- •6.3. Языки программирования для ии и языки представления знаний
- •6.4. Инструментальные пакеты для ии
- •6.5. WorkBench-системы
- •7. Пример разработки системы, основанной на знаниях
- •7.1. Продукционно-фреймовый япз pilot/2
- •7.1.1. Структура пилот-программ и управление выводом
- •7.1.2. Декларативное представление данных и знаний
- •7.1.3. Процедурные средства языка
- •7.2. Психодиагностика – пример предметной области для построения экспертных систем
- •7.2.1. Особенности предметной области
- •7.2.2. Батарея психодиагностических эс «Ориентир»
- •7.3. Разработка и реализация
- •7.3.1. Архитектура системы и ее база знаний
- •7.3.2. Общение с пользователем и опрос испытуемых
- •7.3.3. Вывод портретов и генерация их текстовых представлений
- •7.3.4. Помощь и объяснения в эс «Cattell»
- •8. Представление данных и знаний в Интернете
- •8.1. Язык html и представление знаний 8.1.1. Историческая справка
- •8.1.2. Html - язык гипертекстовой разметки Интернет-документов
- •8.1.3. Возможности представления знаний на базе языка html
- •8.2. Онтологии и онтологические системы
- •8.2.1. Основные определения
- •8.2.2. Модели онтологии и онтологической системы
- •8.2.3. Методологии создания и «жизненный цикл» онтологий
- •8.2.4. Примеры онтологий
- •8.3. Системы и средства представления онтологических знаний
- •8.3.1. Основные подходы
- •8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- •Средства спецификации онтологий в проекте Ontobroker
- •Формализм запросов
- •Формализм представления и машина вывода
- •Аннотация Web-страниц онтологической информацией
- •8.3.3. Проект shoe - спецификация онтологий и инструментарий Общая характеристика проекта
- •Спецификации онтологий и инструментарий shoe
- •Формализм представления и машина вывода
- •Аннотация Web-документов на базе онтологии
- •Формализм запросов
- •8.3.4. Другие подходы и тенденции
- •9. Интеллектуальные Интернет-технологии
- •9.1. Программные агенты и мультиагентные системы
- •9.1.1. Историческая справка
- •9.1.2. Основные понятия
- •9.2. Проектирование и реализация агентов и мультиагентных систем
- •9.2.1. Общие вопросы проектирования агентов и mac
- •9.2.2. Инструментарий AgentBuilder
- •9.2.3. Система Bee-gent
- •9.3. Информационный поиск в среде Интернет
- •9.3.1. Машины поиска
- •9.3.2. Неспециализированные и специализированные поисковые агенты
- •9.3.3. Системы интеллектуальных поисковых агентов
- •Autonomy и Web compass - системы интеллектуального поиска и обработки информации
- •Проект системы marri
- •Прототип системы OntoSeek
- •(Onto)2 - агент поиска и выбора онтологий
5.1.2. Методы многомерного шкалирования
В дальнейшем развитие методов психосемантики шло по линии разработки удобных пакетов прикладных программ, основанных на методах многомерного шкалирования (МШ), факторного анализа, а также специализированных методов (статистической) обработки репертуарных решеток [Франселла, Баннистер, 1987]. Примерами пакетов такого типа являются системы KELLY [Похилько, Страхов, 1990], MADONNA [Терехина, 1988], MEDIS [Алексеева, Воинов и др., 1989]. С другой стороны, специфика ряда конкретных приложений, прежде всего в инженерии знаний, требовала также развития иных (не численных) методов обработки психосемантических данных, использующих - в той или иной форме - парадигму логического вывода на знаниях. Ярким примером этого направления служит система AQUINAS [Boose et al., 1989; Boose, 1990]. Однако анализ практического применения систем обоих типов к задачам инженерии знаний приводит к выводу о несовершенстве имеющихся методик и необходимости их развития в соответствии с современными требованиями инженерии знаний. Наибольшие перспективы в этой области, по-видимому, у методов много-мерного шкалирования).
Многомерное шкалирование (МШ) сегодня - это математический инструментарий, предназначенный для обработки данных о попарных сходствах, связях или отношениях между анализируемыми объектами с целью представления этих объектов в виде точек некоторого координатного пространства. МШ представляет собой один из разделов прикладной статистики, научной дисциплины, разрабатывающей и систематизирующей понятия, приемы, математические методы и модели, предназначенные для сбора, стандартной записи, систематизации и обработки статистических данных с целью их лаконичного представления, интерпретации и получения научных и практических выводов. Традиционно МШ используется для решения трех типов задач:
1. Поиск и интерпретация латентных (то есть скрытых, непосредственно не наблюдаемых) переменных, объясняющих заданную структуру попарных расстояний (связей, близостей).
2. Верификация геометрической конфигурации системы анализируемых объектов в координатном пространстве латентных переменных.
3. Сжатие исходного массива данных с минимальными потерями в их информативности.
Независимо от задачи МШ всегда используется как инструмент наглядного представления (визуализации) исходных данных. МШ широко применяется в исследованиях по антропологии, педагогике, психологии, экономике, социологии [Дэйвисон, 1988].
В основе данного подхода лежит интерактивная процедура субъективного шкалирования, когда испытуемому (то есть эксперту) предлагается оценить сходство между различными элементами П с помощью некоторой градуированной шкалы (например, от 0 до 9, или от -2 до +2). После такой процедуры аналитик располагает численно представленными стандартизованными данными, поддающимися обработке существующими пакетами прикладных программ, реализующими различные алгоритмы формирования концептов более высокого уровня абстракции и строящими геометрическую интерпретацию семантического пространства в евклидовой системе координат.
Основной тип данных в МШ - меры близости между двумя объектами (i, j) -dij. Если мера близости такова, что самые большие значения dij соответствуют парам наиболее похожих объектов, то dij - мера сходства, если, наоборот, наименее похожим, то dij - мера различия.
МШ использует дистанционную модель различия, используя понятие расстояния в геометрии как аналогию сходства и различия понятий (рис. 5.3).
Для того чтобы функция d, определенная на парах объектов (а, b), была евклидовым расстоянием, она должна удовлетворять следующим четырем аксиомам:
d (a,b)>0,
d(a,a) = 0,
d(a,b) = d(b,a),
d(a,b)+d(b,c) > d(a,c).
Тогда, согласно обычной формуле евклидова расстояния, мера различия двух объектов i и j со значениями признака k у объектов i и j соответственно Xik и Xjk:
Рис. 5.3. Расстояние в евклидовой метрике
Дистанционная модель была многократно проверена в социологии и психологии [Monahan, Lockhead, 1977; Петренко, 1988, Шмелев, 1983], что дает возможность оценить ее пригодность для использования.
В большинстве работ по МШ используется матричная алгебра. Геометрическая интерпретация позволяет представить абстрактные понятия матричной алгебры в конкретной графической форме. Для облегчения интерпретации решения задачи МШ к первоначально оцененной матрице координат стимулов X применяется вращение
Среди множества алгоритмов МШ широко используются различные модификации метрических методов Торгерсона [Torgerson, 1958], а также неметрические модели, например Крускала [Kruskal, 1964]
При сравнении методов МШ с другими методами анализа, теоретически применимыми в инженерии знаний (иерархический кластерный анализ [Дюран, Оделл, 1977] или факторный анализ [Иберла, 1980]), МШ выигрывает за счет возможности дать наглядное количественное координатное представление, зачастую более простое и поэтому легче интерпретируемое экспертами.