
- •1. Введение в интеллектуальные системы.................................................................7
- •2. Разработка систем, основанных на знаниях ........................................................36
- •3. Теоретические аспекты инженерии знаний..........................................................55
- •4. Технологии инженерии знаний.............................................................................. 95
- •5. Новые тенденции и прикладные аспекты
- •6. Программный инструментарий разработки систем, основанных на знаниях............................................................................................................................194
- •7. Пример разработки системы, основанной на знаниях ................................….226
- •8. Представление данных и знаний в Интернете...................................................257
- •9. Интеллектуальные Интернет-технологии..........................................................300
- •1. Введение в интеллектуальные системы
- •1.1. Краткая история искусственного интеллекта
- •1.1.1. Предыстория
- •1.1.2. Зарождение нейрокибернетики
- •1.1.3. От кибернетики «черного ящика» к ии
- •1.1.4. История искусственного интеллекта в России
- •1.2. Основные направления исследований в области искусственного интеллекта
- •1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based systems)
- •1.2.2. Программное обеспечение систем ии (software engineering for Al)
- •1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural language processing)
- •1.2.4. Интеллектуальные роботы (robotics)
- •1.2.5. Обучение и самообучение (machine learning)
- •1.2.6. Распознавание образов (pattern recognition)
- •1.2.7. Новые архитектуры компьютеров (new hardware platforms and architectures)
- •1.2.8. Игры и машинное творчество
- •1.2.9. Другие направления
- •1.3. Представление знаний и вывод на знаниях
- •1.3.1. Данные и знания
- •1.3.2. Модели представления знаний
- •1.3.3. Вывод на знаниях
- •1.4. Нечеткие знания
- •1.4.1. Основы теории нечетких множеств
- •123456789 10 Рис. 1.7. Формирование нечетких множеств
- •1.4.2. Операции с нечеткими знаниями
- •1.5. Прикладные интеллектуальные системы
- •2. Разработка систем, основанных на знаниях
- •2.1. Введение в экспертные системы. Определение и структура
- •2.2. Классификация систем, основанных на знаниях
- •2.2.1. Классификация по решаемой задаче
- •2.2.2. Классификация по связи с реальным временем
- •2.2.3. Классификация по типу эвм
- •2.2.4. Классификация по степени интеграции с другими программами
- •2.3. Коллектив разработчиков
- •2.4. Технология проектирования и разработки
- •2.4.1. Проблемы разработки промышленных эс
- •2.4.2. Выбор подходящей проблемы
- •2.4.3. Технология быстрого прототипирования
- •2.4.4. Развитие прототипа до промышленной эс
- •2.4.5. Оценка системы
- •2.4.6. Стыковка системы
- •2.4.7. Поддержка системы
- •3. Теоретические аспекты инженерии знаний
- •3.1. Поле знаний
- •3.1.1. О языке описания поля знаний
- •3.1.2. Семиотическая модель поля знаний
- •3.1.3. «Пирамида» знаний
- •3.2. Стратегии получения знаний
- •3.3. Теоретические аспекты извлечения знаний
- •3.3.1. Психологический аспект
- •3.3.2. Лингвистический аспект
- •3.3.3. Гносеологический аспект извлечения знаний
- •3.4. Теоретические аспекты структурирования знаний
- •3.4.1. Историческая справка
- •3.4.2. Иерархический подход
- •3.4.3. Традиционные методологии структурирования
- •3.4.4. Объектно-структурный подход (осп)
- •4. Технологии инженерии знаний
- •4.1. Классификация методов практического извлечения знаний
- •4.2. Коммуникативные методы
- •4.2.1. Пассивные методы
- •4.2.2. Активные индивидуальные методы
- •4.2.3. Активные групповые методы
- •4.3. Текстологические методы
- •4.4. Простейшие методы структурирования
- •4.4.1. Алгоритм для «чайников»
- •4.4.2. Специальные методы структурирования
- •4.5. Состояние и перспективы автоматизированного приобретения знаний
- •4.5.1. Эволюция систем приобретения знаний
- •4.5.2. Современное состояние
- •4.6. Примеры методов и систем приобретения знаний
- •4.6.1. Автоматизированное структурированное интервью
- •4.6.2. Имитация консультаций
- •4.6.3. Интегрированные среды приобретения знаний
- •4.6.4. Приобретение знаний из текстов
- •5. Новые тенденции и прикладные аспекты инженерии знаний
- •5.1. Латентные структуры знаний и психосемантика
- •5.1.1. Семантические пространства
- •5.1.2. Методы многомерного шкалирования
- •5.1.3. Использование метафор для выявления «скрытых» структур знаний
- •5.2. Метод репертуарных решеток
- •5.2.1. Основные понятия
- •5.2.2. Методы выявления конструктов Метод минимального контекста
- •5.2.3. Анализ репертуарных решеток
- •5.2.4. Автоматизированные методы
- •5.3. Управление знаниями
- •5.3.1. Что такое «управление знаниями»
- •5.3.2. Управление знаниям и корпоративная память
- •5.3.3. Системы omis
- •5.3.4. Особенности разработки omis
- •5.4. Визуальное проектирование баз знаний как инструмент познания
- •5.4.1. От понятийных карт к семантическим сетям
- •5.4.2. База знаний как познавательный инструмент
- •5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- •5.5.1. Гипертекстовые системы
- •5.5.2. От мультимедиа к гипермедиа
- •5.5.3. На пути к адаптивным обучающим системам
- •6. Программный инструментарий разработки систем, основанных на знаниях
- •6.1. Технологии разработки программного обеспечения - цели, принципы, парадигмы
- •6.1.1. Основные понятия процесса разработки программного обеспечения (по)
- •6.1.2. Модели процесса разработки по
- •6.1.3. Инструментальные средства поддержки разработки систем по
- •6.2. Методологии создания и модели
- •6.3. Языки программирования для ии и языки представления знаний
- •6.4. Инструментальные пакеты для ии
- •6.5. WorkBench-системы
- •7. Пример разработки системы, основанной на знаниях
- •7.1. Продукционно-фреймовый япз pilot/2
- •7.1.1. Структура пилот-программ и управление выводом
- •7.1.2. Декларативное представление данных и знаний
- •7.1.3. Процедурные средства языка
- •7.2. Психодиагностика – пример предметной области для построения экспертных систем
- •7.2.1. Особенности предметной области
- •7.2.2. Батарея психодиагностических эс «Ориентир»
- •7.3. Разработка и реализация
- •7.3.1. Архитектура системы и ее база знаний
- •7.3.2. Общение с пользователем и опрос испытуемых
- •7.3.3. Вывод портретов и генерация их текстовых представлений
- •7.3.4. Помощь и объяснения в эс «Cattell»
- •8. Представление данных и знаний в Интернете
- •8.1. Язык html и представление знаний 8.1.1. Историческая справка
- •8.1.2. Html - язык гипертекстовой разметки Интернет-документов
- •8.1.3. Возможности представления знаний на базе языка html
- •8.2. Онтологии и онтологические системы
- •8.2.1. Основные определения
- •8.2.2. Модели онтологии и онтологической системы
- •8.2.3. Методологии создания и «жизненный цикл» онтологий
- •8.2.4. Примеры онтологий
- •8.3. Системы и средства представления онтологических знаний
- •8.3.1. Основные подходы
- •8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- •Средства спецификации онтологий в проекте Ontobroker
- •Формализм запросов
- •Формализм представления и машина вывода
- •Аннотация Web-страниц онтологической информацией
- •8.3.3. Проект shoe - спецификация онтологий и инструментарий Общая характеристика проекта
- •Спецификации онтологий и инструментарий shoe
- •Формализм представления и машина вывода
- •Аннотация Web-документов на базе онтологии
- •Формализм запросов
- •8.3.4. Другие подходы и тенденции
- •9. Интеллектуальные Интернет-технологии
- •9.1. Программные агенты и мультиагентные системы
- •9.1.1. Историческая справка
- •9.1.2. Основные понятия
- •9.2. Проектирование и реализация агентов и мультиагентных систем
- •9.2.1. Общие вопросы проектирования агентов и mac
- •9.2.2. Инструментарий AgentBuilder
- •9.2.3. Система Bee-gent
- •9.3. Информационный поиск в среде Интернет
- •9.3.1. Машины поиска
- •9.3.2. Неспециализированные и специализированные поисковые агенты
- •9.3.3. Системы интеллектуальных поисковых агентов
- •Autonomy и Web compass - системы интеллектуального поиска и обработки информации
- •Проект системы marri
- •Прототип системы OntoSeek
- •(Onto)2 - агент поиска и выбора онтологий
1.3.3. Вывод на знаниях
Несмотря на все недостатки, наибольшее распространение получила продукционная модель представления знаний. При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода.
Машина вывода
Машина вывода (интерпретатор правил) выполняет две функции: во-первых, просмотр существующих фактов из рабочей памяти (базы данных) и правил из базы знаний и добавление (по мере возможности) в рабочую память новых фактов и, во-вторых, определение порядка просмотра и применения правил. Этот механизм управляет процессом консультации, сохраняя для пользователя информацию о полученных заключениях, и запрашивает у него информацию, когда для срабатывания очередного правила в рабочей памяти оказывается недостаточно данных [Осуга, Саэки, 1990].
В подавляющем большинстве систем, основанных на знаниях, механизм вывода представляет собой небольшую по объему программу и включает два компонента - один реализует собственно вывод, другой управляет этим процессом. Действие компонента вывода основано на применении правила, называемого modus ponens.
Правило modus ponens. Если известно, что истинно утверждение А и существует правило вида «ЕСЛИ А, ТО В», тогда утверждение В также истинно.
Правила срабатывают, когда находятся факты, удовлетворяющие их левой части: если истинна посылка, то должно быть истинно и заключение.
Компонент вывода должен функционировать даже при недостатке информации. Полученное решение может и не быть точным, однако система не должна останавливаться из-за того, что отсутствует какая-либо часть входной информации.
Управляющий компонент определяет порядок применения правил и выполняет четыре функции.
1. Сопоставление — образец правила сопоставляется с имеющимися фактами.
2. Выбор — если в конкретной ситуации может быть применено сразу несколько правил, то из них выбирается одно, наиболее подходящее по заданному критерию (разрешение конфликта).
3. Срабатывание — если образец правила при сопоставлении совпал с какими-либо фактами из рабочей памяти, то правило срабатывает.
4. Действие — рабочая память подвергается изменению путем добавления в нее заключения сработавшего правила. Если в правой части правила содержится указание на какое-либо действие, то оно выполняется (как, например, в системах обеспечения безопасности информации).
Интерпретатор продукций работает циклически. В каждом цикле он просматривает все правила, чтобы выявить те, посылки которых совпадают с известными на данный момент фактами из рабочей памяти. После выбора правило срабатывает, его заключение заносится в рабочую память, и затем цикл повторяется сначала.
В одном цикле может сработать только одно правило. Если несколько правил успешно сопоставлены с фактами, то интерпретатор производит выбор по определенному критерию единственного правила, которое срабатывает в данном цикле. Цикл работы интерпретатора схематически представлен на рис. 1.3.
Рис. 1.3. Цикл работы интерпретатора
Информация из рабочей памяти последовательно сопоставляется с посылками правил для выявления успешного сопоставления. Совокупность отобранных правил составляет так называемое конфликтное множество. Для разрешения конфликта интерпретатор имеет критерий, с помощью которого он выбирает единственное правило, после чего оно срабатывает. Это выражается в занесении фактов, образующих заключение правила, в рабочую память или в изменении критерия выбора конфликтующих правил. Если же в заключение правила входит название какого-нибудь действия, то оно выполняется.
Работа машины вывода зависит только от состояния рабочей памяти и от состава базы знаний. На практике обычно учитывается история работы, то есть поведение механизма вывода в предшествующих циклах. Информация о поведении механизма вывода запоминается в памяти состояний (рис. 1.4). Обычно память состояний содержит протокол системы.
Рис. 1.4. Схема функционирования интерпретатора
Стратегии управления выводом
От выбранного метода поиска, то есть стратегии вывода, будет зависеть порядок применения и срабатывания правил. Процедура выбора сводится к определению направления поиска и способа его осуществления. Процедуры, реализующие поиск, обычно «зашиты» в механизм вывода, поэтому в большинстве систем инженеры знаний не имеют к ним доступа и, следовательно, не могут в них ничего изменять по своему желанию.
При разработке стратегии управления выводом важно определить два вопроса:
1. Какую точку в пространстве состояний принять в качестве исходной? От выбора этой точки зависит и метод осуществления поиска - в прямом или обратном направлении.
2. Какими методами можно повысить эффективность поиска решения? Эти методы определяются выбранной стратегией перебора - глубину, в ширину, по подзадачам или иначе.
Прямой и обратный вывод
При обратном порядке вывода вначале выдвигается некоторая гипотеза, а затем механизм вывода как бы возвращается назад, переходя к фактам, пытаясь найти те, которые подтверждают гипотезу (рис. 1.5, правая часть). Если она оказалась правильной, то выбирается следующая гипотеза, детализирующая первую и являющаяся по отношению к ней подцелью. Далее отыскиваются факты, подтверждающие истинность подчиненной гипотезы. Вывод такого типа называется управляемым целями, или управляемым консеквентами. Обратный поиск применяется в тех случаях, когда цели известны и их сравнительно немного.
Рис. 1.5. Стратегии вывода
В системах с прямым выводом по известным фактам отыскивается заключение, которое из этих фактов следует (см. рис. 1.5, левая часть). Если такое заключение удается найти, то оно заносится в рабочую память. Прямой вывод часто называют выводом, управляемым данными, или выводом, управляемым антецедентами.
Существуют системы, в которых вывод основывается на сочетании упомянутых выше методов - обратного и ограниченного прямого. Такой комбинированный метод получил название циклического.
Пример 1.5
Имеется фрагмент базы знаний из двух правил:
П1. Если «отдых - летом» и «человек - активный», то «ехать в горы».
П2. Если «любит солнце», то «отдых летом».
Предположим, в систему поступили факты - «человек активный» и «любит солнце».
ПРЯМОЙ ВЫВОД — исходя из фактических данных, получить рекомендацию.
1-й проход.
Шаг 1. Пробуем П1, не работает (не хватает данных «отдых - летом»).
Шаг 2. Пробуем П2, работает, в базу поступает факт «отдых - летом».
2-й проход.
Шаг 3. Пробуем П1, работает, активируется цель «ехать в горы», которая и выступает как совет, который дает ЭС.
ОБРАТНЫЙ ВЫВОД - подтвердить выбранную цель при помощи имеющихся правил и данных. 1-й проход.
Шаг 1. Цель - «ехать в горы»: пробуем П1 - данных «отдых - летом» нет, они становятся новой целью и ищется правило, где цель в левой части.
Шаг 2. Цель «отдых - летом»: правило П2 подтверждает цель и активирует ее. 2-й проход.
Шаг 3. Пробуем П1, подтверждается искомая цель.
Методы поиска в глубину и ширину
В системах, база знаний которых насчитывает сотни правил, желательным является использование стратегии управления выводом, позволяющей минимизировать время поиска решения и тем самым повысить эффективность вывода. К числу таких стратегий относятся: поиск в глубину, поиск в ширину, разбиение на подзадачи и альфа-бета алгоритм [Таунсенд, Фохт, 1991; Уэно, Исидзука, 1989; Справочник по ИИ, 1990].
При поиске в глубину в качестве очередной подцели выбирается та, которая соответствует следующему, более детальному уровню описания задачи. Например, диагностирующая система, сделав на основе известных симптомов предположение о наличии определенного заболевания, будет продолжать запрашивать уточняющие признаки и симптомы этой болезни до тех пор, пока полностью не опровергнет выдвинутую гипотезу.
При поиске в ширину, напротив, система вначале проанализирует все симптомы, находящиеся на одном уровне пространства состояний, даже если они относятся к разным заболеваниям, и лишь затем перейдет к симптомам следующего уровня детальности.
Разбиение на подзадачи - подразумевает выделение подзадач, решение которых рассматривается как достижение промежуточных целей на пути к конечной цели. Примером, подтверждающим эффективность разбиения на подзадачи, является поиск неисправностей в компьютере - сначала выявляется отказавшая подсистема (питание, память и т. д.), что значительно сужает пространство поиска. Если удается правильно понять сущность задачи и оптимально разбить ее на систему иерархически связанных целей-подцелей, то можно добиться того, что путь к ее решению в пространстве поиска будет минимален.
Альфа-бета алгоритм позволяет уменьшить пространство состояний путем удаления ветвей, неперспективных для успешного поиска. Поэтому просматриваются только те вершины, в которые можно попасть в результате следующего шага, после чего неперспективные направления исключаются. Альфа-бета алгоритм нашел широкое применение в основном в системах, ориентированных на различные игры, например в шахматных программах.