Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lekts_Ekonometrika-zaochke.docx
Скачиваний:
0
Добавлен:
01.03.2020
Размер:
429.86 Кб
Скачать

Тема 1. Введение. Эконометрика и эконометрическое моделирование.

Вопросы

  • Понятие эконометрики.

  • Типы экономических данных, используемых в эконометрических исследованиях: пространственные данные и временные ряды

  • Специфика экономических данных

  • Классификация эконометрических моделей

  • Основные этапы построения эконометрических моделей

Термин «эконометрика» появляется в литературе в начале двадцатого века и означает «эконометрические измерения». Приведем некоторые используемые в литературе определения эконометрики.

Эконометрия (эконометрика), наука, изучающая конкретные количественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей1.

Наиболее часто используют определение эконометрики, которое предложил известный российский ученый С.А. Айвазян.

Эконометрикаэто самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенная для того, чтобы на базе экономической теории, экономической статистики, математико-статистического инструментария придавать конкретное ко­личественное выражение общим закономерностям, обусловленным экономической теорией взаимосвязей экономических явлений и процессов [7].

В мировой науке эконометрика занимает достойное место. Свидетельством этого является присуждение за наиболее выдающиеся разработки в этой облас­ти Нобелевских премий по экономике Рагнару Фришу и Яну Тильбергену (1969), Лоуренсу Клейну (1980), Трюгве Хаавельмо (1989), Роберту Лукасу (1995), Джеймсу Хекману и Даниелю Мак-Фаддену (2000) [8].

Типы экономических данных, используемых в эконометрических исследованиях.

Пространственные данные – характеризуют ситуацию по конкретной переменной (или набору переменных), относящейся к пространственно разделенным сходным объектам в один и тот же момент времени. Таковы, например, данные по курсам покупки или продажи наличной валюты в конкретный день по разным обменным пунктам г. Москвы. Другим примером является, скажем, набор сведений (объем производства, количество работников, доход и др.) по разным фирмам в один и тот же момент времени или период.

Временные ряды отражают изменения (динамику) какой-либо переменой на промежутке времени. В качестве примеров временных рядов можно привести ежеквартальные данные по инфляции, данные по средней заработной плате, национальному доходу и денежной эмиссии за несколько и др.

Специфика экономических данных.

В эконометрике решаются задачи описания данных, оценивания, проверки гипотез, восстановления зависимостей, классификации объектов и признаков, прогнозирования, принятия статистических решений и др.

При выборе методов анализа конкретных экономических данных следует учитывать, что экономические данные обладают рядом особенностей.

Многие экономические показатели неотрицательны. Значит, их надо описывать неотрицательными случайными величинами.

В экономике доля нечисловых данных существенно выше, чем в технике и, соответственно больше применений для ста­тистики объектов нечисловой природы.

Количество изучаемых объектов в экономическом исследовании часто ограничено в принципе, поэтому обоснование вероятностных моделей в ряде случаев затруднено.

Экономические процессы развиваются во времени, поэтому большое место в эконометрике занимают вопросы анализа и про­гнозирования временных рядов, в том числе многомерных. При этом следует отметить, что временные ряды качественно отличаются от простых статистических выборок. Эти особенности состоят в следующем:

  • последовательные по времени уровни временных рядов являются взаимозависимыми, особенно это относится к близко расположенным наблюдениям;

  • в зависимости от момента наблюдения уровни во временных рядах обладают разной информативностью: информационная ценность наблюдений убывает по мере их удаления от текущего момента времени;

  • с увеличением количества уровней временного ряда точность статистических характеристик не будет увеличиваться пропорционально числу наблюдений, а при появлении новых закономерностей развития она может даже уменьшаться. [8].