
- •Содержание
- •Глоссарий
- •2. Конспект лекционных занятий лекция 1. Введение. Математические модели нелинейных элементов систем автоматического управления
- •Требования, предъявляемые к математическим моделям систем автоматического управления.
- •Математические модели нелинейных элементов систем автоматического управления.
- •Характеристика с насыщением (ограничение).
- •2. Реле с зоной нечувствительности.
- •3. Реле с гистерезисом.
- •4. Нелинейное звено типа "Люфт".
- •5. Нелинейное звено типа "Вязкое трение".
- •6. Нелинейное звено типа "Сухое трение".
- •Лекция 2. Основные особенности нелинейных систем автоматического управления
- •Основные методы исследования нелинейных систем:
- •Понятие о методе фазовой плоскости исследования нелинейных систем.
- •Лекция 3. Типы особых точек и фазовые портреты линейных систем второго порядка.
- •Лекция 4. Способы построения фазовых портретов нелинейных систем по уравнениям первого приближения.
- •Случай 1. Корни характеристического уравнения – чисто мнимые (Центр).
- •Корни характеристического уравнения
- •Случай 2. Корни характеристического уравнения – комплексно-сопряженные (фокус)
- •Случай 4 Корни характеристического уравнения действительны и разных знаков (седло)
- •Решение уравнения (1) аналогично предыдущему случаю имеет вид
- •Случай 5 Корни характеристического уравнения равны кратные (вырожденный узел ). Рассмотрим систему
- •Матрица динамики системы
- •Лекция 5. Линеаризация уравнений систем автоматического управления. Уравнения первого приближения.
- •Так как в особой точке справедливо и , то окончательно получаем
- •Фазовые траектории нелинейных систем автоматического управления.
- •Лекция 6. Построение фазовых портретов нелинейных систем управления по уравнениям первого приближения.
- •Лекция 7. Исследование процессов в нелинейных системах методом фазовой плоскости. Реле с гистерезисом и зоной нечувствительности.
- •Исследование процессов в нелинейных системах методом фазовой плоскости. Реле с гистерезисом.
- •Лекция 8. Исследование процессов в нелинейных системах методом фазовой плоскости. Скользящие процессы в релейных системах.
- •Вывод 3. Уравнение движения системы вдоль линии переключения
- •Процессы в релейных системах со скользящим режимом.
- •Лекция 9. Основы исследования систем автоматического управления методом гармонической линеаризации
- •Математическая модель исследуемой системы автоматического управления.
- •II. В системе возникли автоколебания.
- •Математическая основа метода гармонической линеаризации.
- •Свойство фильтра линейной части системы.
- •Коэффициенты гармонической линеаризации.
- •VI. Гармонически линеаризованное нелинейное звено.
- •Исследования автоколебаний в нелинейных системах методом гармонической линеаризации.
- •Лекция 10. Методы определения амплитуды и частоты автоколебаний в нелинейных системах автоматического управления
- •Исходные положения.
- •Линейная часть системы управления обладает свойством фильтра, т.Е. , , следовательно, переменную можно представить в виде , .
- •Лекция 11. Алгебраический метод определения параметров периодических решений нелинейных систем.
- •Частотные методы определения параметров периодических решений.
- •Лекция 12. Устойчивость периодического решения
- •Применение критерия Михайлова для исследования устойчивости периодического решения.
- •Аналитическая форма критерия устойчивости периодического решения.
- •Применение критерия Гурвица для исследования устойчивости периодического решения.
- •Решение. Гармоническая линеаризация нелинейного звена дает следующие коэффициенты гармонической линеаризации
- •Несимметричные автоколебания. Постоянные ошибки
- •Выделим отсюда уравнение для постоянных составляющей
- •Лекция 13. Исследование устойчивости нелинейных систем. Определение устойчивости, функции ляпунова.
- •Теоремы Ляпунова.
- •Лекция 14. Устойчивость нелинейных управляемых систем. Критерий в.-м. Попова.
- •Интерпретация функции .
- •Видоизмененная частотная характеристика.
- •Способ построения диаграмм качества.
- •Лабораторная работа № 1 Моделирование систем управления в пакете Simulink
- •Описание системы
- •Инструкция по выполнению работы
- •Контрольные вопросы к защите
- •Лабораторная работа № 2 Моделирование нелинейных систем управления Цели работы
- •Задачи работы
- •Оформление отчета
- •Описание системы
- •Инструкция по выполнению работы
- •Контрольные вопросы к защите
- •Лабораторная работа № 3 Программирование в среде Matlab Цели работы
- •Задачи работы
- •Оформление отчета
- •Описание системы
- •Инструкция по выполнению работы
- •Контрольные вопросы к защите
- •Лабораторная работа № 4 Оптимизация нелинейных систем Цели работы
- •Задачи работы
- •Оформление отчета
- •Описание системы
- •Инструкция по выполнению работы
- •Контрольные вопросы к защите
- •Лабораторная работа № 7 Цифровая реализация непрерывного регулятора Цели работы
- •Задачи работы
- •Оформление отчета
- •Описание системы
- •Инструкция по выполнению работы
- •Контрольные вопросы к защите
- •4. Практические занятия Практическое занятие 1. Разработка алгоритма исследования линейных систем автоматического управления методом фазовой плоскости.
- •Пример. Структурная схема системы автоматического управления имеет вид, показанный на рисунке
- •Влияние параметров системы управления на тип особой точки. Бифуркация.
- •Пример. Установить типы особых точек нелинейной системы
- •Решение. Определим координаты особых точек
- •Пример. Структурная схема системы автоматического управления имеет вид, показанный на рисунке
- •Решение. В соответствии с выше принятыми обозначениями
- •Самостоятельная работа студентов под руководством преподавателей (срсп). Срсп №1
- •Задание
- •Указания к выполнению
- •Задание к срсп №3 Тема: Дискретизация и наложение спектров (aliasing)
- •Задание к срсп №4 Тема: Восстановление дискретизированных Сигналов
- •Задание к срсп №5 Тема: Дуобинарное упражнение
- •Самостоятельная работа студентов
- •7. Экзаменационные вопросы
- •Понятие о методе фазовой плоскости исследования нелинейных систем.
- •Коэффициенты гармонической линеаризации.
- •Список рекомендуемой литературы Основная литература:
Частотные методы определения параметров периодических решений.
Пусть структурная схема гармонически линеаризованной системы имеет вид:
Составим уравнения гармонически линеаризованной системы управления при .
.
(1)
Из системы уравнений (1) получаем
,
(2)
где
– передаточная функция линейной части
системы
,
(3)
–
передаточная
функция гармонически линеаризованного
нелинейного звена
.
(4)
Обозначим через
(5)
передаточную функцию разомкнутой цепи гармонически линеаризованной системы. Амплитудно-фазовая частотная характеристика разомкнутой цепи гармонически линеаризованной системы
.
(6)
Периодическое
решение гармонически линеаризованной
системы получается при наличии в
характеристическом уравнении замкнутой
системы пары чисто мнимых корней. Система
находится на границе устойчивости. По
критерию Найквиста это соответствует
прохождению амплитудно-фазовой частотной
характеристики разомкнутой цепи
гармонически линеаризованной системы
через точку с координатами
.
Следовательно, периодическое решение
определяется равенством
,
(7)
Из равенства (7) получаем
.
(8)
Уравнение
(8) определяет искомые значения амплитуды
и частоты
периодического решения. Уравнение (8)
можно решить графическим способом
следующим образом.
На комплексной плоскости
строится амплитудно-фазовая частотная характеристика линейной части
.
На комплексной плоскости строится амплитудно-фазовая характеристика гармонически линеаризованного звена с передаточной функцией
.
Точка пересечения построенных графиков определяет величины и . При этом значение отсчитывается по кривой , а значение – по кривой .
Вместо уравнения (8) можно воспользоваться двумя скалярными уравнениями
,
(9)
,
(10)
Совместное
решение системы уравнений (9) и (10)
определяют численные значения искомых
параметров периодических решений
.
Последними двумя уравнениями для
определения периодического решения
графическим способом целесообразно
использовать построение в логарифмическом
масштабе, привлекая логарифмически
частотные характеристики линейной
части. Тогда вместо (9) и (10) будем иметь
следующие два уравнения
,
(11)
,
(12)
Замечание. Уравнение –это равенство двух комплексных чисел. Два комплексных числа равны, если равны их модули и аргументы.
Это значит, что уравнение (8) и система уравнений (9), (10) эквивалентны, т.е. равенство (8) эквивалентно двум действительным равенствам (9) и (10) или, что тоже самое равенствам (11) и (12).
.
Последовательность действий при графическом способе решения системы уравнений (11), (12)
1.
Строится логарифмическая амплитудно
частотная характеристика линейной
части исследуемой системы
.
2.
Строится фазочастотная характеристика
линейной части исследуемой системы
.
3.Строится
график функции
,
амплитуда
– берется в натуральном масштабе.
Строится график функции
.
Построение кривой
.
Нахождение
периодического решения в случае
однозначной нечетной нелинейности
упрощается. В этом случае
и уравнения (11) и (12) принимают вид
,
(13)
.
(14)
Графическое решение показано на рисунке