- •1 Подстанции систем электроснабжения. Основные понятия
- •2 Структурные схемы трансформаторных подстанций
- •3 Общие вопросы проектирования подстанций
- •4 Основные элементы распределительных устройств
- •5 Схема с одной несекционированной системой шин: особенности, область применения, достоинства и недостатки
- •6 Схема с одной секционированной выключателем системой шин: особенности, область применения, достоинства и недостатки
- •7 Две одиночные секционированные выключателями системы шин. Особенности и область применения
- •8 Четыре одиночные секционированные выключателями системы шин. Особенности и область применения
- •9 Схема с одной секционированной выключателем и обходной системами шин. Особенности и область применения
- •10 Схема с двумя системами сборных шин. Варианты схемы. Особенности и область применения. Недостатки схемы
- •11 Схема с двумя системами шин и обходной с шиносоединительным и обходным выключателями. Особенности и область применения
- •12 Блочные схемы. Особенности и область применения
- •13 Мостиковые схемы. Особенности и область применения
- •14 Схема "заход-выход". Особенности и область применения
- •15 Схема четырехугольника. Особенности и область применения
- •16 Обзор основных типов комплектных трансформаторных подстанций напряжением 35-220 кВ
- •17 Комплектные трансформаторные подстанции блочного типа напряжением 35-220 кВ производства Самарского завода "Электрощит "
- •18 Комплектные распределительные устройства напряжением 6-10 кВ. Общие сведения
- •19 Комплектные распределительные устройства стационарного исполнения напряжением 6-10 кВ (на примере ксо-2001 мэщ)
- •Обозначение камер стационарного исполнения:
- •20 Комплектные распределительные устройства стационарного исполнения напряжением 6-10 кВ (на примере ксо- 6(10)-э1 "Аврора")
- •Условное обозначение ячейки ксо-6(10)-э1 "Аврора"
- •21 Комплектные распределительные устройства выкатного исполнения внутренней установки напряжением 6-10 кВ (на примере кру к-63 сэщ)
- •22 Комплектные распределительные устройства выкатного исполнения наружной установки напряжением 6-10 кВ (на примере крун к-59 сэщ)
- •23 Выбор комплектного распределительного устройства
- •24 Варианты выполнения различных присоединений распределительного устройства напряжением 6-10 кВ
- •25 Системы охлаждения силовых трансформаторов
- •26 Выбор числа и мощности силовых трансформаторов на подстанции
- •27 Трансформаторы тока. Основные понятия
- •28 Конструкции трансформаторов тока
- •29 Выбор трансформаторов тока. Схемы соединения измерительных трансформаторов тока и приборов
- •30 Трансформаторы напряжения. Основные понятия и схемы соединения
- •31 Конструкции трансформаторов напряжения
- •32 Выбор и проверка высоковольтных выключателей
- •33 Выбор и проверка разъединителей, отделителей и короткозамыкателей
- •34 Выбор и проверка выключателей нагрузки
- •Iном Iнорм.Расч;
- •35 Выбор жестких шин в в схемах напряжением выше 1000 в
- •36 Выбор гибких шин в схемах напряжением выше 1000 в
- •37 Выбор кабелей напряжением выше 1000 в
- •38 Устройства вч связи. Общие сведения
- •39 Устройства вч связи. Способы присоединения к лэп
- •40 Измерения и учет на подстанциях
- •1 Подстанция (определение); типы подстанций
- •2 Трансформаторные подстанции
- •3 Преобразовательные подстанции
- •4 Распределительные подстанции
- •5 Проходные, тупиковые и ответвительные подстанции
- •6 Главная понизительная подстанция
- •7 Подстанция глубокого ввода
- •8 Узловая подстанция
- •9 Центральная распределительная подстанция
- •10 Схемы и группы соединения обмоток силовых трансформаторов
- •11 Условия параллельной работы силовых трансформаторов
- •12 Системы охлаждения силовых трансформаторов
- •13 Способы включения синхронных генераторов на параллельную работу с сетью
- •14 Способы регулирования напряжения на подстанции
- •15 Масляные выключатели
- •16 Воздушные выключатели
- •17 Электромагнитные выключатели
- •18 Вакуумные выключатели
- •19 Элегазовые выключатели
- •20 Приводы выключателей
- •21 Системы оперативного тока на подстанциях
- •22 Режимы работы нейтрали
- •23 Область применения автотрансформаторов
- •24 Способы ограничения тока короткого замыкания
- •25 Токоограничивающие реакторы
6 Главная понизительная подстанция
главная понизительная подстанция представляет собой подстанцию, использующуюся на промышленных предприятиях (потребителях электроэнергии первого уровня) для обеспечения требуемого выходного напряжения.
7 Подстанция глубокого ввода
Главная понизительная подстанция (ГПП) представляет собой подстанцию, получающую питание напряжением 35-220 кВ непосредственно от районной энергосистемы, а затем распределяет электроэнергию на более низком напряжении 6-35 кВ по всему объекту или отдельному его району, т. е. по трансформаторным подстанциям предприятия, города, включая и питание крупных ЭП на 6,10,35 кВ.
Под глубоким вводом подразумевается система питания электроэнергией, при которой электрическая линия подводится как можно ближе к электроустановкам потребителей с целью уменьшения числа ступеней трансформации и снижения потерь мощности и энергии.
Узловая распределительная подстанция (УРП) - это центральная подстанция, питающиеся от энергосистемы напряжением 110-330 кВ, как правило, имеющая районное значение.
Подстанция глубокого ввода (ПГВ) выполняется по упрощенным схемам коммутации на первичном напряжении и получает питание напряжением 35-220 кВ от энергосистемы или от узловой распределительной подстанции определенного района, обеспечивает питанием отдельные объекты, районы, или предприятия.
8 Узловая подстанция
Подстанция узловая — подстанция, связывающая две или более различных сети с трансформированием, преобразованием, распределением и/или передачей энергии по крайней мере между двумя из них.
9 Центральная распределительная подстанция
Центральная распределительная подстанция (ЦРП) - подстанция предприятия, получающая электроэнергию от энергосистемы на напряжении 10(6) кВ и распределяющая ее на том же напряжении по территории предприятия
10 Схемы и группы соединения обмоток силовых трансформаторов
Обмотки трансформаторов
имеют обычно соединения: звезда
Y,
звезда с выведенной
нейтралью
и треугольник
.
Сдвиг фаз между ЭДС первичной и вторичной обмоток (Е1 и Е2) принято выражать условно группой соединений.
В трехфазном трансформаторе применением разных способов соединений обмоток можно образовать двенадцать различных групп соединений, причем при схемах соединения обмоток звездазвезда мы можем получить любую четную группу (2, 4, 6, 8, 10, 0), а при схеме звездатреугольник или треугольникзвезда любую нечетную группу (1, 3, 5, 7, 9, 11).
Группы соединений указываются справа от знаков схем соединения обмоток. Трансформаторы на рисунке 4.4 имеют схемы и группы соединения обмоток: /11, / /011, //11-11.
Соединение в звезду
обмотки ВН позволяет выполнить
внутреннюю изоляцию из расчета
фазной ЭДС
в
раз меньше линейной.
Обмотки НН преимущественно соединяются
в треугольник, что позволяет уменьшить
сечение обмотки, рассчитав ее на фазный
ток
.
Кроме того, при
соединении обмотки трансформатора в
треугольник создается замкнутый контур
для токов высших гармоник, кратных
трем, которые при этом не выходят во
внешнюю сеть, вследствие чего улучшается
симметрия напряжения на нагрузке.
Соединение обмоток в звезду с выведенной нулевой точкой применяется в том случае, когда нейтраль обмотки должна быть заземлена. Заземление нейтрали обмоток ВН обязательно в трансформаторах 230 кВ и выше и во всех автотрансформаторах. Системы 110 кВ могут работать как с глухозаземленной, так и с эффективно заземленной нейтралью, однако для уменьшения токов однофазного КЗ нейтрали части трансформаторов могут быть разземлены. Так как изоляция нулевых выводов обычно не рассчитывается на полное напряжение, то в режиме разземления нейтрали необходимо снизить возможные перенапряжения путем присоединения ограничителей перенапряжений к нулевой точке трансформатора (рисунок 4.5).
Нейтраль заземляется также на вторичных обмотках трансформаторов, питающих четырехпроводные сети 380/220 В.
Нейтрали обмоток при напряжении 1035 кВ не заземляются или заземляются через дугогасящий реактор для компенсации емкостных токов.
а трансформаторов 110220 кВ без РПН;
б трансформаторов 330750 кВ без РПН;
в трансформаторов 110 кВ с РПН;
г автотрансформаторов всех напряжений;
д трансформаторов 150220 кВ с РПН;
е трансформаторов 330-500 кВ с РПН
Рисунок 4.5 Способы заземления нейтралей трансформаторов
и автотрансформаторов
