- •1 Подстанции систем электроснабжения. Основные понятия
- •2 Структурные схемы трансформаторных подстанций
- •3 Общие вопросы проектирования подстанций
- •4 Основные элементы распределительных устройств
- •5 Схема с одной несекционированной системой шин: особенности, область применения, достоинства и недостатки
- •6 Схема с одной секционированной выключателем системой шин: особенности, область применения, достоинства и недостатки
- •7 Две одиночные секционированные выключателями системы шин. Особенности и область применения
- •8 Четыре одиночные секционированные выключателями системы шин. Особенности и область применения
- •9 Схема с одной секционированной выключателем и обходной системами шин. Особенности и область применения
- •10 Схема с двумя системами сборных шин. Варианты схемы. Особенности и область применения. Недостатки схемы
- •11 Схема с двумя системами шин и обходной с шиносоединительным и обходным выключателями. Особенности и область применения
- •12 Блочные схемы. Особенности и область применения
- •13 Мостиковые схемы. Особенности и область применения
- •14 Схема "заход-выход". Особенности и область применения
- •15 Схема четырехугольника. Особенности и область применения
- •16 Обзор основных типов комплектных трансформаторных подстанций напряжением 35-220 кВ
- •17 Комплектные трансформаторные подстанции блочного типа напряжением 35-220 кВ производства Самарского завода "Электрощит "
- •18 Комплектные распределительные устройства напряжением 6-10 кВ. Общие сведения
- •19 Комплектные распределительные устройства стационарного исполнения напряжением 6-10 кВ (на примере ксо-2001 мэщ)
- •Обозначение камер стационарного исполнения:
- •20 Комплектные распределительные устройства стационарного исполнения напряжением 6-10 кВ (на примере ксо- 6(10)-э1 "Аврора")
- •Условное обозначение ячейки ксо-6(10)-э1 "Аврора"
- •21 Комплектные распределительные устройства выкатного исполнения внутренней установки напряжением 6-10 кВ (на примере кру к-63 сэщ)
- •22 Комплектные распределительные устройства выкатного исполнения наружной установки напряжением 6-10 кВ (на примере крун к-59 сэщ)
- •23 Выбор комплектного распределительного устройства
- •24 Варианты выполнения различных присоединений распределительного устройства напряжением 6-10 кВ
- •25 Системы охлаждения силовых трансформаторов
- •26 Выбор числа и мощности силовых трансформаторов на подстанции
- •27 Трансформаторы тока. Основные понятия
- •28 Конструкции трансформаторов тока
- •29 Выбор трансформаторов тока. Схемы соединения измерительных трансформаторов тока и приборов
- •30 Трансформаторы напряжения. Основные понятия и схемы соединения
- •31 Конструкции трансформаторов напряжения
- •32 Выбор и проверка высоковольтных выключателей
- •33 Выбор и проверка разъединителей, отделителей и короткозамыкателей
- •34 Выбор и проверка выключателей нагрузки
- •Iном Iнорм.Расч;
- •35 Выбор жестких шин в в схемах напряжением выше 1000 в
- •36 Выбор гибких шин в схемах напряжением выше 1000 в
- •37 Выбор кабелей напряжением выше 1000 в
- •38 Устройства вч связи. Общие сведения
- •39 Устройства вч связи. Способы присоединения к лэп
- •40 Измерения и учет на подстанциях
- •1 Подстанция (определение); типы подстанций
- •2 Трансформаторные подстанции
- •3 Преобразовательные подстанции
- •4 Распределительные подстанции
- •5 Проходные, тупиковые и ответвительные подстанции
- •6 Главная понизительная подстанция
- •7 Подстанция глубокого ввода
- •8 Узловая подстанция
- •9 Центральная распределительная подстанция
- •10 Схемы и группы соединения обмоток силовых трансформаторов
- •11 Условия параллельной работы силовых трансформаторов
- •12 Системы охлаждения силовых трансформаторов
- •13 Способы включения синхронных генераторов на параллельную работу с сетью
- •14 Способы регулирования напряжения на подстанции
- •15 Масляные выключатели
- •16 Воздушные выключатели
- •17 Электромагнитные выключатели
- •18 Вакуумные выключатели
- •19 Элегазовые выключатели
- •20 Приводы выключателей
- •21 Системы оперативного тока на подстанциях
- •22 Режимы работы нейтрали
- •23 Область применения автотрансформаторов
- •24 Способы ограничения тока короткого замыкания
- •25 Токоограничивающие реакторы
39 Устройства вч связи. Способы присоединения к лэп
Все схемы присоединения к проводам (фазам или грозозащитным тросам) ЛЭП можно разделить на две группы:
1) присоединение между проводами и землей. Это схемы фаза-земля, трос-земля и два троса-земля;
2) присоединение между проводами. Это схемы фаза-фаза, трос-трос, внутрифазное или внутритросовое присоединение соответственно к изолированным проводам расщепленной фазы или троса.
При включении аппаратуры между проводами разных линий используют схему фаза-фаза разных линий.
Наиболее распространенными являются схемы присоединения фаза-земля (рисунок 11.1) и фаза-фаза (рисунок 11.2). На рисунке 11.2 показаны два варианта соединения АУ с ФП при схеме присоединения фаза-фаза с помощью двух коаксиальных ВЧ кабелей (обычно используемая схема) и одного коаксиального ВЧ кабеля. В последнем случае необходим дифференциальный трансформатор, который должен быть составной частью ФП.
Соединение АУ с ФП может осуществляться также в соответствии с рисунком 11.2,б.
ЗН заземляющий нож; РФ разделительный фильтр;
ВК высокочастотный кабель; ВЧА высокочастотная аппаратура
Рисунок 11.1 Присоединение к линии по схеме фаза Сземля
Присоединение по схеме трос-трос и два троса-земля используется, как правило, на линиях 500-750 кВ с двумя грозозащитными тросами.
Внутрифазное присоединение осуществляется, как правило, на линиях 330 кВ, у которых фаза расщеплена на два провода (две составляющие). На рисунке 11.3 представлено внутрифазное соединение к фазе В линии с фазами, расщепленными на две составляющие.
Внутритросовое присоединение осуществляется, как правило, на линиях 1150 кВ, у которых грозозащитный трос расщеплен на два провода.
Рисунок 11.2 Присоединение к линии по схеме фаза В – фаза С
с двумя вариантами использования ВЧ кабелей
Рисунок 11.3 Внутрифазное присоединение к фазе В линии
с фазами, расщепленными на две составляющие
Одним из основных элементов схемы присоединения аппаратуры связи к линиям электропередачи является конденсатор связи высокого напряжения. Конденсатор связи представляет собой конденсатор (обычно бумажно-масляный), рассчитанный на непрерывную работу под фазным напряжением промышленной частоты. Конденсаторы связи часто используются не только для присоединения ВЧ аппаратуры, но и для отбора мощности и в качестве конденсаторных трансформаторов напряжения.
Конденсатор связи, включаемый на полное напряжение сети, должен обладать достаточной электрической прочностью. Пробой конденсатора связи связан с коротким замыканием на шинах подстанции, что может привести к тяжелым последствиям.
Для лучшего согласования входного сопротивления линии и устройства присоединения емкость конденсатора должна быть достаточно большой. Выпускаемые конденсаторы связи дают возможность иметь емкость присоединения на линиях любого класса по напряжению не меньше 3000 пФ, что позволяет получить устройства присоединения с удовлетворительными параметрами. Конденсатор связи подключают к фильтру присоединения, который заземляет нижнюю обкладку этого конденсатора для токов промышленной частоты. Для токов высокой частоты фильтр присоединения совместно с конденсатором связи согласует сопротивление высокочастотного кабеля с входным сопротивлением линии электропередачи и образует фильтр для передачи токов высокой частоты от ВЧ кабеля в линию с малыми потерями. В большинстве случаев фильтр присоединения с конденсатором связи образуют схему полосового фильтра, пропускающего определенную полосу частот.
Ток высокой частоты, проходя через конденсатор связи по первичной обмотке фильтра присоединения на землю, наводит во вторичной обмотке L2 напряжение, которое через конденсатор C1 и соединительную линию попадает на вход аппаратуры связи. Ток промышленной частоты, проходящий через конденсатор связи, мал (от десятков до сотен миллиампер), и падение напряжения на обмотке фильтра присоединения не превышает нескольких вольт. При обрыве или плохом контакте в цепи фильтра присоединения он может оказаться под полным напряжением линии, и поэтому в целях безопасности все работы на фильтре производят при заземлении нижней обкладки конденсатора специальным заземляющим ножом (ЗН рисунок 11.1).
Согласованием входного сопротивления ВЧ аппаратуры связи и линии достигают минимальных потерь энергии ВЧ сигнала. Согласование с воздушной линией (ВЛ), имеющей сопротивление 300450 Ом, не всегда удается выполнить полностью, так как при ограниченной емкости конденсатора связи фильтр с характеристическим сопротивлением со стороны линии, равным характеристическому сопротивлению ВЛ, может иметь узкую полосу пропускания. Для получения нужной полосы пропускания в ряде случаев приходится допускать повышенное (до 2 раз) характеристическое сопротивление фильтра со стороны линии, мирясь с несколько большими потерями вследствие отражения. Фильтр присоединения, устанавливаемый у конденсатора связи, соединяют с аппаратурой высокочастотным кабелем. К одному кабелю может быть подключено несколько высокочастотных аппаратов. Для ослабления взаимных влияний между ними применяют разделительные фильтры (РФ).
Каналы системной автоматики релейной защиты и телеотключения, которые должны быть особо надежны, требуют обязательного применения разделительных фильтров для отделения других каналов связи, работающих через общее устройство присоединения.
Для отделения ВЧ тракта передачи сигнала от оборудования высокого напряжения подстанции, которое может иметь низкое сопротивление для высоких частот канала связи, в фазный провод линии высокого напряжения включается высокочастотный заградитель (ВЗ). Высокочастотный заградитель состоит из силовой катушки (реактора), по которой проходит рабочий ток линии, элемента настройки, присоединяемого параллельно катушке, и защитного устройства. В качестве защитного устройства в составе выпускаемых используются ограничители перенапряжения (ОПН). Высокочастотный заградитель необходим для исключения шунтирования ВЧ сигнала обмоткой силового трансформатора.
Силовая катушка заградителя с элементом настройки образуют двухполюсник, который имеет достаточно высокое сопротивление на рабочих частотах. Для тока промышленной частоты 50 Гц заградитель имеет очень малое сопротивление. Находят применение заградители, рассчитанные на запирание одной или двух узких полос (одно- и двухчастотные заградители) и одной широкой полосы частот в десятки и сотни килогерц (широкополосные заградители). Последние получили наибольшее распространение, несмотря на меньшее сопротивление в полосе заграждения по сравнению с одно- и двухчастотными. Эти заградители дают возможность запирать частоты нескольких каналов связи, подключенные к одному и тому же проводу линии. Высокое сопротивление заградителя в широкой полосе частот можно обеспечить тем легче, чем больше индуктивность реактора. Получить реактор с индуктивностью в несколько миллигенри сложно, так как это приводит к значительному увеличению размеров, массы и стоимости заградителя. Если ограничить активное сопротивление в полосе запираемых частот до 500800 Ом, что достаточно для большинства каналов, то индуктивность силовой катушки может быть не более 2 мГ.
Заградители выпускаются с индуктивностью от 0,25 до 1,2 мГ на рабочие токи от 100 до 2000 А. Рабочий ток заградителя тем выше, чем выше напряжение линии. Для распределительных сетей выпускают заградители на 100300 А, а для линий 330 кВ и выше наибольший рабочий ток заградителя 2000 А.
