
- •И.В. Мельникова Вычислительные машины, системы и сети
- •Часть 1
- •Содержание
- •Лекция 1 Вычислительные сети – частный случай распределенных систем
- •Классификация по совместимости
- •Большие эвм (Main Frame)
- •МиниЭвм
- •МикроЭвм
- •СуперЭвм
- •Выбор подходящей топологии
- •Сложные топологии
- •Магистраль
- •Распределенная магистраль
- •Различные критерии
- •Контрольные вопросы
- •Оптоволокно: неразъемные соединения
- •Соединения оптических волокон с помощью сварки
- •Цикл сварки оптического волокна автоматического сварочного аппарата
- •Аппарат для сварки оптических волокон fsm.05svhii производства Fujikura
- •Соединение оптических волокон методом склеивания
- •Механические соединители оптических волокон
- •Механический соединитель Corelink производства amp
- •Механический соединитель Fibrlok II производства 3m
- •Механический соединитель Fibrlok производства 3m
- •Механический соединитель rms производства at&t
- •Механический соединитель ленточных элементов оптических волокон производства Sumitomo
- •Механические соединители производства Fujikura
- •Передача в основной полосе частот и широкополосная передача
- •Контрольные вопросы
- •Лекция 3 Работа сети
- •Семь уровней модели osi
- •На Транспортном уровне, кроме того, к пакету добавляется информация, которая поможет компьютеру-получателю восстановить исходные данные из последовательности пакетов.
- •Irq Назначение
- •Контрольные вопросы
- •Лекция 4 Передача данных по кабелю
- •Низкоуровневые протоколы
- •Контрольные в опросы
- •Лекция 5 Технология Token Ring
- •Кадр данных
- •Прерывающая последовательность
- •Контрольные вопросы
- •Лекция 6 Технология fddi (Fiber Distributed Data Interface)
- •Контрольные вопросы
- •Лекция 7 Понятие сетевого протокола
- •Блоки сообщений сервера
- •Кадр NetBeui
- •Протокол nmp (Name Management Protocol).
- •Протокол smp(Session Management Protocol) dmp ( Diagnostic and Monitoring Protocol).
- •Протокол udp
- •Протокол dmp
- •Краткое резюме
- •Стек протоколов ipx/spx и система Novell NetWare
- •Средства построения составных сетей стека Novell Общая характеристика протокола ipx
- •Адресация
- •Маршрутизация протокола ipx
- •Адресация
- •Протоколы sap
- •Контрольные вопросы
- •Лекция 8 Стек tcp/ip
- •Комплект протоколов тcp/ip
- •Архитектура tcp/ip
- •Адресация
- •Маски подсетей
- •Не хватает адресов?
- •Маска подсети переменной длины vlsm (Variable Length Subnet Mask)
- •Проблемы классической схемы
- •Бесклассовая междоменная маршрутизация cidr (Classless Inter-Domain Routing)
- •IPing - новое поколение протоколов ip
- •Выводы:
- •Дополнительный материал. (Примеры расчета масок подсетей)
- •Стеки протоколов
- •Стек протоколов при использовании модуля tcp
- •Стек протоколов при работе через транспортный протокол udp
- •Отображение физических адресов на ip-адреса: протоколы arp и rarp
- •Отображение символьных адресов на ip-адреса: служба dns
- •Автоматизация процесса назначения ip-адресов узлам сети – протокол dhcp
- •Протоколы тcp и udp
- •Структура стека протоколов tcp/ip
- •Контрольные вопросы
- •Лекция 9 Большие сети. Технические и программные компоненты расширения сетей. Интеграция локальных и глобальных сетей
- •Примечание
- •Контрольные вопросы
- •Использование маршрутизаторов
- •1. Рассмотрим первый способ.
- •2. Второй способ. Маршрутизация потоков.
- •Компоненты маршрутизации
- •Коммутация
- •Алгоритмы маршрутизации
- •Классификация алгоритмов маршрутизации и общие сведения
- •Цели разработки алгоритмов маршрутизации:
- •Показатели алгоритмов (метрики)
- •Типы алгоритмов
- •Одномаршрутные или многомаршрутные алгоритмы
- •Типы записей в таблице маршрутизации
- •Структура таблицы маршрутизации
- •Среда со статической маршрутизацией
- •Протоколы динамической маршрутизации
- •1) Истечение времени жизни маршрута;
- •2) Указание специального расстояния (бесконечности) до сети, ставшей недоступной.
- •Организации, поддерживающие технологии беспроводных сетей
- •Технологии радиосетей
- •Радиосети стандарта ieee 802.11
- •Компоненты беспроводной сети
- •Направленная антенна
- •Всенаправленная антенна
- •Многоячеечные беспроводные локальные сети (сотовые)
- •Альтернативные технологии радиосетей
- •Микроволновые сетевые технологии
- •Беспроводные сети на базе низкоорбитальных спутников Земли
- •40 Gigabit Ethernet и беспроводные сети Fast Ethernet
- •Атмосферная лазерная связь
- •2,5 Гбит/с по лазерному лучу
- •Передача данных в гвс
- •8. Беспроводные промышленные сети
- •Беспорядочный (т. Е. "не делающий различий") режим - Promiscuous mode.
- •Маска подсети (subnet mask) — специальная битовая комбинация, маскирующая сетевую часть ip-адресов единицами.
- •Региональная телефонная компания - Regional bell operating company (rboc).
Магистраль
Магистраль (backbone) локальной сети выполняет функции соединения между собой всех концентраторов. Область магистрали можно построить в различных топологиях с помощью нескольких сетевых компонентов (рис. 1.27). Магистраль локальной сети выполняет очень важную функцию, объединяя все локальные сетевые ресурсы и, если это возможно, глобальную сеть. Логическое определение магистрали можно дать несколькими способами. Выбор корректной топологии магистрали локальной сети представляет собой далеко не простую задачу. Некоторые варианты весьма привлекательны с точки зрения стоимости, их проще реализовать и настроить. Другие требуют дополнительных вложений и сложны в реализации. Следует также учитывать возможность расширения различных магистральных топологий. Некоторые топологии даже после расширения требуют дополнительных затрат на обеспечение приемлемого уровня производительности. Все возможные варианты должны быть тщательно проанализированы исходя из конкретных требований.
Последовательная магистраль
Изображенная на рисунке 1.28 последовательная магистраль (serial backbone) представляет собой не что иное, как набор концентраторов, соединенных в последовательную цепочку. Как уже указывалось в предыдущих разделах, подобную топологию целесообразно использовать только в небольших сетях. Концентраторы, объединяющие в сеть рабочие станции и серверы, могут быть последовательно соединены друг с другом, образуя, таким образом, своего рода примитивную магистраль. Как упоминалось выше, подобный способ соединения называется последовательной цепочкой.
Рис. 1.27 Магистраль локальной сети
Рис. 1.28Последовательная магистраль или последовательная цепочка
Распределенная магистраль
Распределенной магистрали (distributed backbone) соответствует иерархическая топология, в которой магистральный концентратор занимает центральное место. В роли магистрального концентратора обычно выступает телефонная станция учреждения с выходом в глобальную сеть. Если учитывать схему проводки в здании, телефонная станция занимает идеальное положение. Центральный концентратор соединен с другими концентраторами здания (рис. 1.29). В отличие от последовательной магистрали, такая топология позволяет локальной сети охватывать большие здания, не превышая при этом максимальный диаметр сети. Распределение магистрали подобным образом требует знания топологии проводки здания и ограничений, диктуемых различными средами передачи. Идеальным вариантом при построении распределенной магистрали в достаточно больших сетях является использование волоконно-оптической проводки.
Локализованная магистраль
Топология локализованной магистрали (collapsed backbone) предполагает использование центрального маршрутизатора, соединяющего все сегменты локальной сети. Маршрутизатор эффективно создает конфликтные и передающие домены, увеличивая, таким образом, производительность каждого сегмента локальной сети. Маршрутизаторы функционируют на третьем уровне справочной модели OSI и проигрывают в быстродействии концентраторам. В результате существует некоторая вероятность снижения скорости передачи данных между сегментами локальной сети. Локализованная магистраль является наиболее уязвимым местом (single point of failure) локальной сети. Это не столь существенный недостаток – использование многих других топологий также связано с возможностью выхода из строя всей локальной сети после отказа единственного элемента. Тем не менее, это обстоятельство обязательно следует учитывать при выборе топологии сети. Сегменты локальной сети вполне могут быть объединены маршрутизатором, который выступает в качестве локализованной магистрали. Такая топология поддерживает централизованное управление сетью, но одновременно характеризуется задержками в передаче данных и возможностью выхода из строя всей сети после отказа единственного элемента.
Рис. 1.29 Распределенная магистраль
Рис. 1.30 Локализованная магистраль
Обязательно следует учитывать тот факт, что рабочие станции пользователей очень редко бывают распределены по зданию удобным способом. Скорее всего, возникнет необходимость выделения в сети нескольких сегментов. Вполне вероятно, что некоторые сегменты будут расположены в непосредственной близости. Топологии локализованных магистралей следует планировать с особой тщательностью. Опрометчиво и неудачно спланированные топологии окажут отрицательное влияние на производительность сети.
Параллельная магистраль
В некоторых случаях, когда использовать локализованные магистрали не представляется возможным, приходится идти на некоторый компромисс. Довольно часто этот компромисс приводит к необходимости реализации параллельной магистрали. Существует немало причин для создания магистрали рассматриваемого типа. Рабочие станции пользователей могут быть в значительной степени рассеяны в здании, некоторые рабочие группы и/или приложения могут выдвигать строгие требования к безопасности. Кроме того, может возникнуть необходимость постоянной доступности среды передачи. В любом случае заведение параллельных связей от маршрутизатора локализованной магистрали ко всем телефонным коробкам позволит поддерживать множественные сегменты каждой коробки (рис. 1.31). Топологию параллельной магистрали можно считать модификацией локализованной топологии. В одной телефонной коробке или комнате с оборудованием поддерживается несколько сегментов. В результате несколько увеличиваются затраты на развертывание сети, но одновременно повышается производительность каждого сегмента и его соответствие таким дополнительным критериям, как безопасность.
Выводы по функциональным областям локальных сетей
Глубокое понимание требований к производительности, выдвигаемых покупателями и функциональными областями локальных сетей, является обязательным условием для разработки идеальной топологии, удовлетворяющей всем нуждам пользователя. Потенциальные комбинации ограничены только фантазией разработчика. Технические новинки постоянно расширяют диапазон возможных решений.
Рис. 1.31 Топология параллельной магистрали