
- •И.В. Мельникова Вычислительные машины, системы и сети
- •Часть 1
- •Содержание
- •Лекция 1 Вычислительные сети – частный случай распределенных систем
- •Классификация по совместимости
- •Большие эвм (Main Frame)
- •МиниЭвм
- •МикроЭвм
- •СуперЭвм
- •Выбор подходящей топологии
- •Сложные топологии
- •Магистраль
- •Распределенная магистраль
- •Различные критерии
- •Контрольные вопросы
- •Оптоволокно: неразъемные соединения
- •Соединения оптических волокон с помощью сварки
- •Цикл сварки оптического волокна автоматического сварочного аппарата
- •Аппарат для сварки оптических волокон fsm.05svhii производства Fujikura
- •Соединение оптических волокон методом склеивания
- •Механические соединители оптических волокон
- •Механический соединитель Corelink производства amp
- •Механический соединитель Fibrlok II производства 3m
- •Механический соединитель Fibrlok производства 3m
- •Механический соединитель rms производства at&t
- •Механический соединитель ленточных элементов оптических волокон производства Sumitomo
- •Механические соединители производства Fujikura
- •Передача в основной полосе частот и широкополосная передача
- •Контрольные вопросы
- •Лекция 3 Работа сети
- •Семь уровней модели osi
- •На Транспортном уровне, кроме того, к пакету добавляется информация, которая поможет компьютеру-получателю восстановить исходные данные из последовательности пакетов.
- •Irq Назначение
- •Контрольные вопросы
- •Лекция 4 Передача данных по кабелю
- •Низкоуровневые протоколы
- •Контрольные в опросы
- •Лекция 5 Технология Token Ring
- •Кадр данных
- •Прерывающая последовательность
- •Контрольные вопросы
- •Лекция 6 Технология fddi (Fiber Distributed Data Interface)
- •Контрольные вопросы
- •Лекция 7 Понятие сетевого протокола
- •Блоки сообщений сервера
- •Кадр NetBeui
- •Протокол nmp (Name Management Protocol).
- •Протокол smp(Session Management Protocol) dmp ( Diagnostic and Monitoring Protocol).
- •Протокол udp
- •Протокол dmp
- •Краткое резюме
- •Стек протоколов ipx/spx и система Novell NetWare
- •Средства построения составных сетей стека Novell Общая характеристика протокола ipx
- •Адресация
- •Маршрутизация протокола ipx
- •Адресация
- •Протоколы sap
- •Контрольные вопросы
- •Лекция 8 Стек tcp/ip
- •Комплект протоколов тcp/ip
- •Архитектура tcp/ip
- •Адресация
- •Маски подсетей
- •Не хватает адресов?
- •Маска подсети переменной длины vlsm (Variable Length Subnet Mask)
- •Проблемы классической схемы
- •Бесклассовая междоменная маршрутизация cidr (Classless Inter-Domain Routing)
- •IPing - новое поколение протоколов ip
- •Выводы:
- •Дополнительный материал. (Примеры расчета масок подсетей)
- •Стеки протоколов
- •Стек протоколов при использовании модуля tcp
- •Стек протоколов при работе через транспортный протокол udp
- •Отображение физических адресов на ip-адреса: протоколы arp и rarp
- •Отображение символьных адресов на ip-адреса: служба dns
- •Автоматизация процесса назначения ip-адресов узлам сети – протокол dhcp
- •Протоколы тcp и udp
- •Структура стека протоколов tcp/ip
- •Контрольные вопросы
- •Лекция 9 Большие сети. Технические и программные компоненты расширения сетей. Интеграция локальных и глобальных сетей
- •Примечание
- •Контрольные вопросы
- •Использование маршрутизаторов
- •1. Рассмотрим первый способ.
- •2. Второй способ. Маршрутизация потоков.
- •Компоненты маршрутизации
- •Коммутация
- •Алгоритмы маршрутизации
- •Классификация алгоритмов маршрутизации и общие сведения
- •Цели разработки алгоритмов маршрутизации:
- •Показатели алгоритмов (метрики)
- •Типы алгоритмов
- •Одномаршрутные или многомаршрутные алгоритмы
- •Типы записей в таблице маршрутизации
- •Структура таблицы маршрутизации
- •Среда со статической маршрутизацией
- •Протоколы динамической маршрутизации
- •1) Истечение времени жизни маршрута;
- •2) Указание специального расстояния (бесконечности) до сети, ставшей недоступной.
- •Организации, поддерживающие технологии беспроводных сетей
- •Технологии радиосетей
- •Радиосети стандарта ieee 802.11
- •Компоненты беспроводной сети
- •Направленная антенна
- •Всенаправленная антенна
- •Многоячеечные беспроводные локальные сети (сотовые)
- •Альтернативные технологии радиосетей
- •Микроволновые сетевые технологии
- •Беспроводные сети на базе низкоорбитальных спутников Земли
- •40 Gigabit Ethernet и беспроводные сети Fast Ethernet
- •Атмосферная лазерная связь
- •2,5 Гбит/с по лазерному лучу
- •Передача данных в гвс
- •8. Беспроводные промышленные сети
- •Беспорядочный (т. Е. "не делающий различий") режим - Promiscuous mode.
- •Маска подсети (subnet mask) — специальная битовая комбинация, маскирующая сетевую часть ip-адресов единицами.
- •Региональная телефонная компания - Regional bell operating company (rboc).
Маски подсетей
Подсеть (subnet) — это физический сегмент TCP/IP сети, в котором используются IP-адреса с общим идентификатором сети Как правило, организации получают идентификатор сети от Информационого Центра Интернета (Internet Network Information Center, InterNIC)
Не хватает адресов?
Все же 4-х октетная структура имеет серьезные ограничения. Каждый раз, когда какой-то организации назначается адрес класса А, с ним уходит около 17 млн. адресов хостов. Если назначить все 126 адресов класса А, то свыше 33 млрд. из наличных 4,7 млрд. адресов окажутся занятыми, При этом не важно, используются ли выделенные адреса или нет, все они назначены конкретной сети и повторно использоваться не могут.
Самая большая проблема, однако, связана с классом С. Тому есть две причины. Во-первых, этих адресов меньше всего (имеется лишь около 30 млн. адресов узлов). Во-вторых, эти адреса самые популярные, потому что удовлетворяют размерам большинства локальных сетей. Каждый раз , когда сетевому сегменту выдается адрес класса С, с ним уходят 254 возможных адресов узлов. Вспомним, что для каждой отдельной сети нужен новый номер. Поэтому люди, у которых три сегмента и всего 60 узлов, тратят впустую более 700 возможных адресов рабочих станций (3 сегмента *254 адреса узлов = 762 адреса - 60 активных узлов = 702 незадействованных адреса). Понятно, что при таких темпах наличные хост-номера скоро закончатся.
Однако, наличие классов сетей позволяет маршрутизаторам легко работать с большими сетями без ущерба для производительности. Для решения же проблемы адресов разработана новая версия протокола IP , но до того момента, как новый протокол будет готов для применения на коммерчески доступном оборудовании, пройдет еще несколько лет.
Есть, впрочем, и другие способы более полного использования сетевых номеров . Вспомним, что 32-разрядный адрес делится на четыре логических восьмиразрядных октета. Ничто не мешает заменить эту структуру. Двоичные значения самого адреса изменить конечно, нельзя, но можно изменить способ, которым программное обеспечение интерпретирует его. Это делается при помощи маски подсетей.
Рассмотрим, например, адрес хоста 192.123.004.010. Это адрес класса С, в котором первые 24 бита обозначают номер сети (3 бита - идентификатор класса, 21 бит - для адресации). Остальные 8 битов обозначают хост. Можно установить сетевую маску так, чтобы первые 30 битов обозначали сеть, а остальные два - хост.
Поскольку первые 24 бита адреса класса С обозначают организацию, остальные 8 битов можно использовать так, как нужно для данной организации. Можно использовать их для обозначения хост-машин, но можно назначить некоторые из оставшихся восьми битов подсетям. По сути дела, сетевая часть адреса получает еще одно поле, а диапазон номеров хостов сокращается.
Следует, однако помнить, что устройства в сети не выполняют эту логическую разбивку автоматически. Основываясь на идентификаторе класса С в начале адреса, они продолжают считать, что последние 8 битов адреса обозначают хост. Поэтому о принятой маске нужно сообщить всем устройствам в сегменте сети.
В маске подсети используется очень простой алгоритм. Если бит маски установлен в 1, это часть номера сети. Если бит маски установлен в 0, это часть номера хоста. Следовательно, маска подсети для приведенного выше примера имеет вид 11111111 11111111 11111111 10000000.
Стандартные маски подсетей для различных классов адресов сетей:
Класс Маска подсети
А 11111111 00000000 00000000 00000000
Б 11111111 11111111 00000000 00000000
С 11111111 11111111 11111111 00000000
Маска подсети узла должна применяться при обработке адреса маршрутизаторами. Если ранее маршрутизатор просто проверял, не совпадает адрес сети получателя с адресом какой-либо непосредственно подключенной к маршрутизатору сети, то теперь он должен использовать маску подсети, чтобы выделить адрес сети получателя. При этом выполняется побитовая операция. И для маски подсети и IP-адреса. Если полученный в результате адрес не совпадает с адресом подсети, пакет направляется на другой маршрутизатор, который проводит аналогичные операции.
Чтобы маска подсети работала, ее должны поддерживать все устройства данной подсети. Некоторые старые клиентские программы TCP/IP систему масок подсетей не поддерживают, поэтому следует проверять этот момент.
РЕЗЮМЕ
Подсеть — это физический сегмент TCP/IP сети, в котором используются IP-адреса с одним идентификатором сети. Механизм назначения IP-адресов для подсетей называется делением на подсети. Количество бит, отводимых для маски подсети, определяет максимальное число подсетей и узлов в них.
Расчет масок подсетей
Есть несколько разновидностей масок подсети, и реализация той или другой зависит от желаемой схемы сегментации адреса. Простейшая форма маски подсети применяет технологию маскирования подсети маской постоянной длины (Constant-Length Subnet Masking, CLSM). При этом каждая подсеть включает одно и то же количество станций и представляет собой простое разделение адресного пространства за счет организации нескольких равных сегментов. Другая разновидность — технология маскирования подсети маской переменной длины (Variable-Length Subnet Masking, VLSM). Она позволяет разделить адрес на несколько подсетей, каждая из которых необязательно равна по размеру другим.
Когда приходит время разрабатывать схему маскирования подсетей, то, в случае, если все сегменты должны поддерживать примерно равное количество устройств с поправкой 20% в ту или иную сторону, разумнее всего применять схему маскирования маской постоянной длины (CLSM). Но если на один или два сегмента приходится большое количество пользователей, а на другие сегменты — намного меньшее, то более эффективное распределение адресного пространства сможет обеспечить технология маскирования подсети маской переменной длины (VLSM). (В данном случае схему маскирования маской постоянной длины можно применять только для больших сегментов, что привело бы к растрачиванию множества адресов на сегментах с меньшим заполнением.) В схеме адресации VLSM различные подсети могут иметь различные сетевые префиксы, отражающие их схемы и емкости. Несомненно, двоичная природа организации подсетей означает, что все они должны приспосабливаться к тем же видам структур, что характерны и для CLSM. В адресации VLSM отдельные адресные пространства подсетей высокого уровня могут быть разделены на еще более мелкие подпространства, если в том есть необходимость.
Расчет суперсетей
Суперсети "захватывают" разряды из сетевой части IP-адреса, "одалживая" их в хостовой части IP-адреса. Кроме всего прочего, суперсети позволяют различным сетевым IP-адресам объединяться и действовать совместно, как если бы они представляли собой единую логическую сеть. В результате заметно повышается эффективность сообщений внутри локальной сети, т. к. исчезает необходимость внутренней маршрутизации. В некоторых случаях это также делает возможным адресацию к суперсети большего количество хостов, чем при сочетании множества адресов и вот почему:
Сочетание восьми адресов класса С захватывает три разряда из сетевой части адреса и добавляет их в хостовую часть адреса. Таким образом, вместо поддержки восьми разрядов в части ведущего адреса суперсеть поддерживает 11 разрядов (8 + 3) для ведущих адресов. В результате маска подсети принимает форму 255.255.248.0 (вместо 255.255.255.0 по умолчанию).