
- •И.В. Мельникова Вычислительные машины, системы и сети
- •Часть 1
- •Содержание
- •Лекция 1 Вычислительные сети – частный случай распределенных систем
- •Классификация по совместимости
- •Большие эвм (Main Frame)
- •МиниЭвм
- •МикроЭвм
- •СуперЭвм
- •Выбор подходящей топологии
- •Сложные топологии
- •Магистраль
- •Распределенная магистраль
- •Различные критерии
- •Контрольные вопросы
- •Оптоволокно: неразъемные соединения
- •Соединения оптических волокон с помощью сварки
- •Цикл сварки оптического волокна автоматического сварочного аппарата
- •Аппарат для сварки оптических волокон fsm.05svhii производства Fujikura
- •Соединение оптических волокон методом склеивания
- •Механические соединители оптических волокон
- •Механический соединитель Corelink производства amp
- •Механический соединитель Fibrlok II производства 3m
- •Механический соединитель Fibrlok производства 3m
- •Механический соединитель rms производства at&t
- •Механический соединитель ленточных элементов оптических волокон производства Sumitomo
- •Механические соединители производства Fujikura
- •Передача в основной полосе частот и широкополосная передача
- •Контрольные вопросы
- •Лекция 3 Работа сети
- •Семь уровней модели osi
- •На Транспортном уровне, кроме того, к пакету добавляется информация, которая поможет компьютеру-получателю восстановить исходные данные из последовательности пакетов.
- •Irq Назначение
- •Контрольные вопросы
- •Лекция 4 Передача данных по кабелю
- •Низкоуровневые протоколы
- •Контрольные в опросы
- •Лекция 5 Технология Token Ring
- •Кадр данных
- •Прерывающая последовательность
- •Контрольные вопросы
- •Лекция 6 Технология fddi (Fiber Distributed Data Interface)
- •Контрольные вопросы
- •Лекция 7 Понятие сетевого протокола
- •Блоки сообщений сервера
- •Кадр NetBeui
- •Протокол nmp (Name Management Protocol).
- •Протокол smp(Session Management Protocol) dmp ( Diagnostic and Monitoring Protocol).
- •Протокол udp
- •Протокол dmp
- •Краткое резюме
- •Стек протоколов ipx/spx и система Novell NetWare
- •Средства построения составных сетей стека Novell Общая характеристика протокола ipx
- •Адресация
- •Маршрутизация протокола ipx
- •Адресация
- •Протоколы sap
- •Контрольные вопросы
- •Лекция 8 Стек tcp/ip
- •Комплект протоколов тcp/ip
- •Архитектура tcp/ip
- •Адресация
- •Маски подсетей
- •Не хватает адресов?
- •Маска подсети переменной длины vlsm (Variable Length Subnet Mask)
- •Проблемы классической схемы
- •Бесклассовая междоменная маршрутизация cidr (Classless Inter-Domain Routing)
- •IPing - новое поколение протоколов ip
- •Выводы:
- •Дополнительный материал. (Примеры расчета масок подсетей)
- •Стеки протоколов
- •Стек протоколов при использовании модуля tcp
- •Стек протоколов при работе через транспортный протокол udp
- •Отображение физических адресов на ip-адреса: протоколы arp и rarp
- •Отображение символьных адресов на ip-адреса: служба dns
- •Автоматизация процесса назначения ip-адресов узлам сети – протокол dhcp
- •Протоколы тcp и udp
- •Структура стека протоколов tcp/ip
- •Контрольные вопросы
- •Лекция 9 Большие сети. Технические и программные компоненты расширения сетей. Интеграция локальных и глобальных сетей
- •Примечание
- •Контрольные вопросы
- •Использование маршрутизаторов
- •1. Рассмотрим первый способ.
- •2. Второй способ. Маршрутизация потоков.
- •Компоненты маршрутизации
- •Коммутация
- •Алгоритмы маршрутизации
- •Классификация алгоритмов маршрутизации и общие сведения
- •Цели разработки алгоритмов маршрутизации:
- •Показатели алгоритмов (метрики)
- •Типы алгоритмов
- •Одномаршрутные или многомаршрутные алгоритмы
- •Типы записей в таблице маршрутизации
- •Структура таблицы маршрутизации
- •Среда со статической маршрутизацией
- •Протоколы динамической маршрутизации
- •1) Истечение времени жизни маршрута;
- •2) Указание специального расстояния (бесконечности) до сети, ставшей недоступной.
- •Организации, поддерживающие технологии беспроводных сетей
- •Технологии радиосетей
- •Радиосети стандарта ieee 802.11
- •Компоненты беспроводной сети
- •Направленная антенна
- •Всенаправленная антенна
- •Многоячеечные беспроводные локальные сети (сотовые)
- •Альтернативные технологии радиосетей
- •Микроволновые сетевые технологии
- •Беспроводные сети на базе низкоорбитальных спутников Земли
- •40 Gigabit Ethernet и беспроводные сети Fast Ethernet
- •Атмосферная лазерная связь
- •2,5 Гбит/с по лазерному лучу
- •Передача данных в гвс
- •8. Беспроводные промышленные сети
- •Беспорядочный (т. Е. "не делающий различий") режим - Promiscuous mode.
- •Маска подсети (subnet mask) — специальная битовая комбинация, маскирующая сетевую часть ip-адресов единицами.
- •Региональная телефонная компания - Regional bell operating company (rboc).
Контрольные вопросы
Как происходит передача в сетях Token Ring?
Разновидности Token Ring?
Физические компоненты Token Ring?
Понятие активного и резервного мониторов в сетях Token Ring.:
Типы кадров в Token Ring;
Какие разновидности кадров Token Ring относятся к подуровням LLC и МAC?
Функции активного монитора?
Для чего каждая станция должна знать адрес NAUN?
Включение новой станции в сеть Token Ring.;
Определение оптимального маршрута в сложных сетях Token Ring.;
Что такое маршрутизация от источника?
Как обнаруживается и ликвидируется сбой в сетях Token Ring?
Выборы нового активного монитора в сети Token Ring.;
Система приоритетов в сетях Token Ring;
Какое устройство в сетях Token Ring реализует все механизмы встроенной отказоустойчивости?
Перспективы развития Token Ring.
Лекция 6 Технология fddi (Fiber Distributed Data Interface)
История создания стандарта FDDI
Технология Fiber Distributed Data Interface – первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.
Попытки применения света в качестве среды, переносящей информацию, предпринимались давно. Еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми волнами и модулировавшего отраженный свет.
Работы по использованию света для передачи информации активизировались в 1960-е годы в связи с изобретением лазера, который мог обеспечить модуляцию света на очень высоких частотах, то есть создать широкополосный канал для передачи большого количества информации с высокой скоростью. Примерно в то же время появились оптические волокна, которые могли передавать свет в кабельных системах подобно тому, как медные провода передают электрические сигналы в традиционных кабелях. Однако потери света в этих волокнах были слишком велики, чтобы они могли быть использованы как альтернатива медным жилам. Недорогие оптические волокна, обеспечивающие низкие потери мощности светового сигнала и широкую полосу пропускания (до нескольких ГГц) появились только в 1970-е годы. В начале 1980-х годов началась промышленная установка и эксплуатация оптоволоконных каналов связи для территориальных телекоммуникационных систем.
В 1980-е годы начались также работы по созданию стандартных технологий и устройств для использования оптоволоконных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного стандарта для локальных сетей были сосредоточены в Американском Национальном Институте по Стандартизации – ANSI, в рамках созданного для этой цели комитета X3T9.5.
Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом X3T9.5 в 1986 – 1988 годах, и тогда же появилось первое оборудование – сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.
В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает высокую степень совместимости.
Основы технологии FDDI
Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Многие из своих ключевых свойств FDDI унаследовала от сетей Token Ring (стандарт IEEE 802.5). Прежде всего - это кольцевая топология и маркерный метод доступа к среде. Маркер - специальный сигнал, вращающийся по кольцу. Станция, получившая маркер, может передавать свои данные.
Однако FDDI имеет и ряд принципиальных отличий от Token Ring, делающий ее более скоростным протоколом. Например, изменен алгоритм модуляции данных на физическом уровне. Token Ring использует схему манчестерского кодирования, требующую удвоения полосы передаваемого сигнала относительно передаваемых птимизировано и управление доступа к среде (Medium Access Control - VAC). В Token Ring оно основано на побитовой основе, а в FDDI на параллельной обработке группы из четырех или восьми передаваемых битов. Это снижает требования к быстродействию оборудования.
Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:
Повысить битовую скорость передачи данных до 100 Мбит/с;
Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода – повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;
Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.
Одной из наиболее важных характеристик FDDI является то, что она использует световод в качестве передающей среды. Световод обеспечивает ряд преимуществ по сравнению с традиционной медной проводкой, включая защиту данных (оптоволокно не излучает электрические сигналы, которые можно перехватывать), надежность (оптоволокно устойчиво к электрическим помехам) и скорость (потенциальная пропускная способность световода намного выше, чем у медного кабеля).
FDDI устанавливает два типа используемoгo оптического волокна: одномодовое (иногда называемое мономодовым) и многомодовое. Моды можно представить в виде пучков лучей света, входящего в оптическое волокно под определенным углом. Одномодовое волокно позволяет распространяться через оптическое волокно только одному моду света, в то время как многомодовое волокно позволяет распространяться по оптическому волокну множеству мод света. Т.к. множество мод света, распространяющихся по оптическому кабелю, могут проходить различные расстояния (в зависимости от угла входа), и, следовательно, достигать пункт назначения в разное время (явление, называемое модальной дисперсией), одномодовый световод способен обеспечивать большую полосу пропускания и прогoн кабеля на большие расстояния, чем многомодовые световоды. Благодаря этим характеристикам одномодовые световоды часто используются в качестве основы университетских сетей, в то время как многомодовый световод часто используется для соединения рабочих групп. В многомодовом световоде в качестве генераторов света используются диоды, излучающие свет (LED), в то время как в одномодовом световоде обычно применяются лазеры.
С
еть
FDDI строится на основе двух оптоволоконных
колец, которые образуют основной и
резервный пути передачи данных между
узлами сети. Использование двух колец
– это основной способ повышения
отказоустойчивости в сети FDDI, и узлы,
которые хотят им воспользоваться, должны
быть подключены к обоим кольцам. В
нормальном режиме работы сети данные
проходят через все узлы и все участки
кабеля первичного (Primary) кольца, поэтому
этот режим назван режимом Thru – «сквозным»
или «транзитным». Вторичное кольцо
(Secondary) в этом режиме не используется.
В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рисунок 6.1), образуя вновь единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному – по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.
Две машины класса A могут использовать второе кольцо для маршрутизации в обход отказавшего домена. Важную роль здесь играют концентраторы, которые должны уметь мгновенно изменять маршрут. Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца – token ring (рисунок 6.2, а).
Рис. 6.1 Реконфигурация колец FDDI при отказе
Первичное кольцо
Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр – токен доступа (рисунок 6.2, б). После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена – Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.
Рис. 6.2 Обработка кадров станциями кольца FDDI
Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рисунке (рисунок 6.2, в). Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.
Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции (рисунок 6.2, г). В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.
После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети после того, как он, совершив полный оборот, вновь дойдет до нее (рисунок 6.2, д). При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.
Синхронная и асинхронная передача
Подключение к сети FDDI станции могут передавать свои данные в кольцо в двух режимах - в синхронном и в асинхронном.
Синхронный режим устроен следующим образом. В процессе инициализации сети определяется ожидаемое время обхода кольца маркером - TTRT (Target Token Rotation Time). Каждой станции, захватившей маркер, отводится гарантированное время для передачи ее данных в кольцо. По истечении этого времени станция должна закончить передачу и послать маркер в кольцо.
Каждая станция в момент посылки нового маркера включает таймер, измеряющий временной интервал до момента возвращения к ней маркера - TRT (Token Rotation Timer). Если маркер возвратится к станции раньше ожидаемого времени обхода TTRT, то станция может продлить время передачи своих данных в кольцо и после окончания синхронной передачи. На этом основана асинхронная передача. Дополнительный временной интервал для передачи станцией будет равен разности между ожидаемым и реальным временем обхода кольца маркером.
Из описанного выше алгоритма видно, что если одна или несколько станций не имеют достаточного объема данных, чтобы полностью использовать временной интервал для синхронной передачи, то неиспользованная ими полоса пропускания сразу становится доступной для асинхронной передачи другими станциями.
На рисунке 6.3 приведена структура протоколов технологии FDDI в сравнении с семиуровневой моделью OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме – без установления соединений и без восстановления потерянных или поврежденных кадров.
Рис. 6.3 Структура протоколов технологии FDDI
Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).
Уровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну. В его спецификации определяются:
Требования к мощности оптических сигналов и к многомодовому оптоволоконному кабелю 62.5/125 мкм;
Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам;
Параметры оптических разъемов MIC (Media Interface Connector), их маркировка;
Длина волны в 1300 нанометров, на которой работают приемопередатчики;
Представление сигналов в оптических волокнах.
Спецификация TP-PMD определяет возможность передачи данных между станциями по витой паре.
Уровень PHY выполняет кодирование и декодирование данных, циркулирующих между МАС-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов. В его спецификации определяются:
Кодирование информации в соответствии со схемой 4В/5В;
Правила тактирования сигналов;
Требования к стабильности тактовой частоты 125 МГц;
Правила преобразования информации из параллельной формы в последовательную.
Уровень MAC ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры:
Протокол передачи токена;
Правила захвата и ретрансляции токена;
Формирование кадра;
Правила генерации и распознавания адресов;
Правила вычисления и проверки 32-разрядной контрольной суммы.
Уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью. В спецификации SMT определено следующее:
Алгоритмы обнаружения ошибок и восстановления после сбоев;
Правила мониторинга работы кольца и станций;
Управление кольцом;
Процедуры инициализации кольца.
Отказоустойчивость сетей FDDI обеспечивается за счет управления уровнем SMT другими уровнями: с помощью уровня PHY устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC – логические отказы сети, например, потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.
Станции, подключенные к сети FDDI, подразделяются на две категории.
1. Станции класса А или "станции, подключаемые к двум кольцам" (DAS) имеют физические подключения к первичному и вторичному кольцам (Dual Attached Station - двукратно подключенная станция); подсоединены к обеим кольцевым сетям. "концентратор", который обеспечивает связи для множества SAS. Koнцентратор отвечает за то, чтобы отказ или отключение питания в любой из SAS не прерывали кольцо. Это особенно необходимо, когда к кольцу подключен РС или аналогичные устройства, у которых питание часто включается и выключается.
2. Станции класса B или "станции, подключаемые к одному кольцу" (SAS) подсоединены к одной кольцевой сети; имеют подключение только к первичному кольцу (Single Attached Station - однократно подключенная станция) и подключается только через специальные устройства, называемые концентраторами.
На Рис. 6.4 "Узлы FDDI: DAS, SAS и концентратор" представлена типичная конфигурация FDDI, включающая как DAS, так и SAS.
Рис. 6.4
Каждая DAS FDDI имеет два порта, обозначенных А и В. Эти порты подключа-ют станцию к двойному кольцу FDDI. Следовательно, как это показано на рис. 6.5 "Порты DAS FDDI", каждый порт обеспечивает соединение как с первичным, так и со вторичным кольцом.
Рис. 6.5
Порты сетевых устройств, подключаемых к сети FDDI, классифицируются на 4 категории: А порты, В порты, М порты и S порты. Портом А называется порт, принимающий данные из первичного кольца и передающий их во вторичное кольцо. Порт В - это порт, принимающий данные из вторичного кольца и передающий их в первичное кольцо. М (Master) и S (Slave) порт передают и принимают данные с одного и того же кольца. М порт используется на концентраторе для подключения Single Attached Station через S порт.
Стандарт X3T9.5 имеет ряд ограничений. Общая длина двойного волоконно-оптического кольца - до 100 км. К кольцу можно подключить до 500 станций класса А. Расстояние между узлами при использовании многомодового волоконно-оптического кабеля - до 2 км, а при использовании одномодового кабеля определяется в основном параметрами волокна и приемо-передающего оборудования (может достигать 60 и более км).
Типы трафика
FDDI поддерживает распределение полосы пропускания сети в масштабе реального времени, что является идеальным для ряда различных типов прикладных задач. FDDI обеспечивает эту поддержку путем обозначения двух типов трафика: синхронного и асинхронного. Синхронный трафик может потреблять часть общей полосы пропускания сети FDDI, равную 100 Mb/сек; остальную часть может потреблять асинхронный трафик. Синхронная полоса пропускания выделяется тем станциям, которым необходима постоянная возможность передачи. Например, наличие такой возможности помогает при передаче голоса и видеоинформации. Другие станции используют остальную часть полосы пропускания асинхронно. Спецификация SMT для сети FDDI определяет схему распределенных заявок на выделение полосы пропускания FDDI.
Распределение асинхронной полосы пропускания производится с использованием восьмиуровневой схемы приоритетов. Каждой станции присваивается определенный уровень приоритета пользования асинхронной полосой пропускания. FDDI также разрешает длительные диалоги, когда станции могут временно использовать всю асинхронную полосу пропускания. Механизм приоритетов FDDI может фактически блокировать станции, которые не могут пользоваться синхронной полосой пропускания и имеют слишком низкий приоритет пользования асинхронной полосой пропускания.
Отказоустойчивость сетей FDDI
Стандарт ANSI X3T9.5 регламентирует 4 основных отказустойчивых свойства сетей FDDI:
1. Кольцевая кабельная система со станциями класса А отказоустойчива к однократному обрыву кабеля в любом месте кольца. Станции, находящиеся по обе стороны обрыва, переконфигурируют путь циркуляции маркера и данных, подключая для этого вторичное волоконно-оптическое кольцо.
2. Выключение питания, отказ одной из станций класса В или обрыв кабеля от концентратора до этой станции будет обнаружен концентратором, и произойдет отключение станции от кольца.
3. Две станции класса В подключены сразу к двум концентраторам. Этот специальный вид подключения называется Dual Homing и может быть использован для отказоустойчивого (к неисправностям в концентраторе или в кабельной системе) подключения станций класса В за счет дублирования подключения к основному кольцу. В нормальном режиме обмен данными происходит только через один концентратор. Если по какой-либо причине связь теряется, то обмен будет осуществляться через второй концентратор.
4. Выключение питания или отказ одной из станций класса А не приведет к отказу остальных станций, подключенных к кольцу, т. к. световой сигнал будет просто пассивно передаваться к следующей станции через оптический переключатель (Optical Bypass Switch). Стандарт допускает иметь до трех последовательно расположенных выключенных станций.
Основной особенностью отказоустойчивости является наличие двойной кольцевой сети. Если какая-нибудь станция, подключенная к двойной кольцевой сети, отказывает, или у нее отключается питание, или если поврежден кабель, то двойная кольцевая сеть автоматически "свертывается" ("подгибается" внутрь) в одно кольцо, как показано на Рис. 6.6 "Конфигурация восстановления кольца при отказе станции". При отказе Станции 3, изображенной на рисунке, двойное кольцо автоматически свертывается в Станциях 2 и 4, образуя одинарное кольцо. Хотя Станция 3 больше не подключена к кольцу, сеть продолжает работать для оставшихся станций.
Рис. 6.6
На Рис. 6.7 "Конфигурация восстановления сети при отказе кабеля" показано, как FDDI компенсирует отказ в проводке. Станции 3 и 4 свертывают кольцо внутрь себя при отказе проводки между этими станциями.
Рис. 6.7
По мере увеличения размеров сетей FDDI растет вероятность увеличения числа отказов кольцевой сети. Если имеют место два отказа кольцевой сети, то кольцо будет свернуто в обоих случаях, что приводит к фактическому сегментированию кольца на два отдельных кольца, которые не могут сообщаться друг с другом. Последующие отказы вызовут дополнительную сегментацию кольца
Для предотвращения сегментации кольца могут быть использованы оптические шунтирующие переключатели, которые исключают отказавшие станции из кольца. На Рис. 6.8 показано "Использование оптического шунтирующего переключателя".
Рис. 6.8
Устройства, критичные к отказам, такие как роутеры или главные универсальные вычислительные машины, могут использовать другую технику повышения отказоустойчивости, называемую "двойным подключением" (dual homing), для того, чтобы обеспечить дополнительную избыточность и повысить гарантию работоспособности. При двойном подключении критичное к отказам устройство подсоединяется к двум концентраторам. Одна пара каналов концентраторов считается активным каналом; другую пару называют пассивным каналом. Пассивный канал находится в режиме поддержки до тех пор, пока не будет установлено, что основной канал (или концентратор, к которому он подключен) отказал. Если это происходит,то пассивный канал автоматически активируется.
В стандартах FDDI уделяется много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.
Для изоляции сбоев здесь используется метод, называемый «испусканием маяка». Суть его в том, что ПК, обнаруживший сбой, начинает посылать в сеть сигнал – маяк, до тех пор, пока не примет маяк от предшествующего в кольце ПК. Это продолжается, пока не останется одного, находящегося непосредственно за неисправным участком ПК, который не посылает маяк.
Рассмотрим рисунок. ПК 1 отказал. ПК 3 определяет сбой, начинает посылать маяк и делает это до тех пор, пока не примет маяк от ПК 2. ПК 2 будет посылать маяк, пока не примет его от ПК 1. Т. к. ПК 1 неисправен, ПК 2 продолжает посылать маяк. Этот сигнал указывает на то, что сбой произошел на ПК 1. Когда посылающий маяк ПК примет наконец свой собственный маяк, он поймет, что неисправность была устранена, восстановит маркер, и сеть восстановится.
Защиту от разрыва в кольце обеспечивают также концентраторы. Они функционируют аналогично концентраторам Token Ring, но являются более интеллектуальными устройствами. Они могут взаимодействовать со станциями для проверки соединения «станция-концентратор», а также способны мгновенно изменять маршрут пакетов.
1
«Заворачивание маркера» – способ обеспечения отказоустойчивости системы, начинающий действовать в случае разрыва в одном из двух колец. Если в кольце происходит разрыв, то вначале идентифицируется отказавший домен (область, которая не может больше передавать данные). Отказавший домен включает в себя машину, ближайшую к разрыву кабеля, и ближайший узел в направлении движения маркера. «Заворачивание маркера» изменяет маршрут пакетов в двух рабочих станциях, ограничивающих отказавший домен.
Резюме:
FDDI – это спецификация, которая описывает высокоскоростную (100 Мбит/с) сеть с передачей маркера топологии «кольцо» на основе оптоволокна. Эта спецификация предназначалась для высокопроизводительных ПК, которым не хватало полосы пропускания существующих архитектур.
FDDI обеспечивает высокоскоростную связь между сетями различных типов. Длина кольца не может превышать 100 км, так что FDDI скорее сеть масштаба города;
FDDI используют для соединения больших компьютеров и мини-компьютеров в компьютерных залах. Такие сети обслуживают интенсивную передачу файлов. При связи с мэйнфреймом ПК часто надо использовать носителя в реальном времени;
FDDI выступает также в качестве магистральной сети, к которой можно подключить другие ЛВС малой производительности. Локальные сети, которым требуется высокая скорость передачи и значительная полоса пропускания, часто используют каналы связи FDDI. Это сети, состоящие из ПК с интенсивно использующими сеть приложениями (видеообработка, системы управления производством, САПР);
FDDI использует стандартную передачу маркера, однако, в отличие от Token Ring, здесь ПК может захватить маркер на ограниченное время и за этот промежуток передать столько кадров, сколько успеет. Завершив передачу, ПК освобождает маркер. За счет этого FDDI имеет более высокую производительность. Размер кадра – от 17 до 4500 байт;
При топологии «двойное кольцо», которая поддерживает 500 ПК при длине кольца 100 км, FDDI функционирует со скоростью 100 Мбит/с;
FDDI основана на технологии совместного использования сети. Это означает, что одновременно могут передавать данные несколько ПК. Это может стать причиной перегрузки сети;
FDDI использует систему передачи маркера в двойном кольце. Трафик в сети FDDI состоит из двух похожих потоков, движущихся в противоположных направлениях. Одно кольцо называется основным, а другое – дополнительным. Обычно данные передаются только по основному кольцу. Если в нем происходит сбой, сеть автоматически перестраивается, и данные начинают передаваться по дополнительному кольцу в противоположном направлении. Одно из достоинств топологии двойного кольца – избыточность. Второе кольцо является резервным, на случай сбоя;
Существуют ограничения. Общая длина кабеля обоих колец не может превышать 200 км, а число подключенных ПК – не более 1000. Эти показатели делятся на два, по числу колец. Кроме того, через каждые 2 км должен быть установлен репитер;
ПК могут подключаться к одному или обоим кольцам FDDI, ПК, подключенные к обоим кольцам, называются станциями Класса A, а ПК, подключенные только к одному кольцу, – станциями Класса В. В случае сбоя станции Класса А участвуют в переконфигурации, а Класса B – нет;
В сети FDDI ПК могут иметь соединение «точка-точка» с концентратором, т. е. сеть FDDI имеет топологию «звезда-кольцо»;
Основная среда передачи для FDDI – оптоволоконный кабель. Вариант FDDI, работающий на медных проводах, называется CDDI, но это ограничивает дальность передачи.
Преимущества и недостатки FDDI:
Высокая пропускная способность. Огромная полоса пропускания – 250 Гбит/с. Скорость 100 Мбит/с;
Хорошая защита;
Физическая долговечность. Разрывы в оптоволоконном кабеле происходят гораздо реже, чем в кабелях других видов;
Устойчивость к электромагнитным помехам;
Расстояние – до 2 км. В условиях эксперимента – на сотни километров;
Вес намного меньше, чем у медного кабеля с аналогичной полосой пропускания;
Использование нескольких маркеров увеличивает быстродействие;
Возможность назначать приоритеты рабочим станциям. Это позволяет при необходимости обходить низкоприоритетные станции, обеспечивая быстрое обслуживание высокоприоритетных;
Отказоустойчивость.
FDDI имеет целый ряд преимуществ. Между тем, как и все топологии и системы, FDDI обладает некоторыми недостатками. FDDI – сложная технология. Ее инсталляция и обслуживание требуют значительного опыта. В то же время это новая технология, и следует ожидать, что со временем она будет усовершенствована.
Другим недостатком FDDI является ее высокая стоимость. Сам волоконно-оптический кабель стоит недешево, однако другое оборудование, такое как адаптеры и концентраторы, обходится еще дороже. Учитывая высокую стоимость основного оборудования (типичный концентратор FDDI стоит более тысячи долларов в расчете на узел), цена даже небольшой сети FDDI для многих будет неприемлема.
Распределенный интерфейс передачи данных по кабельным линиям (CDDI)
Интерфейс CDDI (Copper Distributed Data Interface) создан в качестве альтернативы дорогостоящему волоконно-оптическому кабелю. Этот интерфейс необходимо (для повышения скорости передачи данных) и желательно (для сокращения времени отклика) использовать в существующих сетях с проводкой из экранированного и неэкранированного кабеля.
Рис. 6.9 Запрос и разрешение в сети VG
Рис. 6.10 Пример двухкольцевой архитектуры FDDI
Волоконно-оптический канал (Fibre Channel)
Fibre Channel (FC) – новая разумная схема соединения, поддерживающая не только собственный протокол, но также протоколы FDDI, SCSI, IP и некоторые другие. Это позволило создать единый стандарт для сетевого и обычного обмена данными, равно как и для накопления данных. Первоначально разработанный для глобальных сетей, с помощью коммутаторов стандарт FC может быть адаптирован к локальной сети. Волоконно-оптический канал позволяет порту прослушивать канальные и сетевые интерфейсы, снижая при этом нагрузку на станцию. Канал поддерживает как электрические, так и оптические среды установления соединения, имеющие пропускную способность от 133 до 1062 Мбит/с. Характерной особенностью волоконно‑оптического канала является структура (fabric) – абстрактный объект, соответствующий промежуточному сетевому устройству, будь это кольцевой активный концентратор или коммутатор каналов.
Краткий общий обзор технологии Fibre Channel. Если говорить кратко, Fibre Channel представляет собой сверхвысокоскоростную (до 1 Гбит/с и выше) схему полнодуплексной передачи данных с малой задержкой (10-30 мкс) на расстояния до 10 км. Она в равной мере может использоваться и как технология ввода/вывода, и как технология локальной сети. В названии технологии ('волоконный канал', как можно было бы перевести Fibre Channel на русский язык) оба слова не вполне соответствуют действительности. Физической средой передачи может быть не только оптическое волокно, но и коаксиал, и витая пара, а архитектура представляет собой смесь канальной и сетевой топологии!
УРОВНЕВАЯ МОДЕЛЬ
По сути, Fibre Channel составляет целый комплекс стандартов, многие из которых разрабатываются независимо. Они представляются в виде пятиуровневой модели (см. рисунок 6.11), причем каждый из этих уровней, по мысли разработчиков, должен реализовываться в виде отдельных аппаратных компонентов. Эта модель не имеет прямого соответствия с эталонной моделью OSI. Однако, как мы увидим ниже, первый и второй уровни (точнее, нулевой и первый - FC-0 и FC-1) Fibre Channel соответствуют физическому уровню OSI, а третий (второй - FC-2) уровень - подуровню MAC канального уровня OSI. Уровень FC-0 описывает физические характеристики и возможные типы интерфейсов и среды передачи, в том числе кабели, соединители, излучатели, передатчики и приемники. FC-1 определяет схему кодирования и декодирования сигнала 8B/10B. FC-2 выполняет основные функции Fibre Channel, в том числе сигнализацию, т. е. установление соединения между отправителем и получателем; сегментацию, сборку и упорядочивание передаваемых кадров; контроль потоков с помощью схемы скользящего окна, обнаружение и исправление ошибок; реализацию сервисных классов. Все вместе эти три уровня образуют так называемый физический уровень Fibre Channel (Fibre Channel Physical, FC-PH). FC-3 описывает общие процедуры (хотя, наверно, их было бы правильнее назвать специальными) для таких особых ситуаций, как запись данных с чередованием на дисковый массив или многоадресная рассылка через видеосервер. FC-4 обеспечивает преобразование различных сетевых протоколов и приложений для их реализации поверх Fibre Channel. Как можно видеть из Рисунка 1, Fibre Channel способен поддерживать самые разные по своей природе сетевые протоколы, интерфейсы ввода/вывода и приложения.
ТОПОЛОГИЯ F
Простейшей топологией является, очевидно, 'точка-точка'. Она состоит из двух устройств Fibre Channel и прямого соединения между ними. Одно волокно связывает приемник на одном устройстве с передатчиком на другом устройстве, а второе - передатчик с приемником. (Под волокном мы будем подразумевать как оптическое волокно, так и отдельную витую пару и жилу коаксиального кабеля.) Оба устройства могут, естественно, использовать всю пропускную способность соединения, но при этом они должны работать на одной скорости. Наиболее распространенной и вместе с тем наиболее сложной топологией является арбитражная петля. Она позволяет подключить по кольцу до 127 портов без использования коммутатора. Однако, в отличие от двух других топологий, пропускная способность является разделяемой, т. е. в один конкретный момент времени только два устройства могут взаимодействовать друг с другом. В случае конкуренции за доступ к среде передачи между несколькими устройствами арбитраж выигрывает устройство с наименьшим адресом. Все устройства в петле должны функционировать на одной скорости. Петля может подключаться к порту коммутатора, но только к одному. За неимением лучшего русскоязычного термина мы будем называть топологию Fabric коммутирующей структурой. Коммутируемая топология предусматривает использование коммутатора(-ов), но позволяет за счет этого подключить свыше 16 млн устройств. К коммутатору могут подключаться устройства с разными скоростями передачи и по разным физическим средам. ТИПЫ ПОРТОВ В зависимости от типа устройства, своего назначения и поддерживаемой топологии порты делятся на несколько типов. Порт Fibre Channel на конечном устройстве (сервере, дисковом массиве, принтере и т. п.) называется 'узловой порт' (Node Port, N_Port). Порт на коммутаторе, к которому подключается узловой порт, называется 'коммутирующий порт' (Fabric Port, F_Port). Если же эти порты могут подключаться к арбитражной петле, то они маркируются дополнительно буквой L от английского loop, т. е. 'петля'. Таким образом, соответствующие порты на узле и коммутаторе будут обозначаться как NL_Port и FL_Port. Помимо F_Port коммутатор может иметь еще и порт расширения (Expansion Port, E_Port). Этот порт предназначен для подключения одного коммутатора к другому. Если к порту расширения может быть подключен не только другой коммутатор, но и узел, то такой порт именуется универсальным портом (Generic Port, G_Port). При условии, что он поддерживает арбитражную петлю, универсальный порт может маркироваться как GL_Port. РАЗНОВИДНОСТИ ОБОРУДОВАНИЯ Помимо разделения пропускной способности арбитражная петля имеет и другие недостатки. В частности, при отказе адаптера на каком-либо устройстве или разрыве в соединяющем кабеле петля оказывается полностью неработоспособной. Кроме того, при добавлении нового устройства вся петля должна быть инициализирована заново (чтобы подключенное устройство могло получить адрес), причем эта процедура может занимать достаточно много времени. Эти проблемы можно решить за счет использования концентраторов Fibre Channel. Кроме того, физическая топология 'звезда' (хотя логически это по-прежнему кольцо), как правило, гораздо удобнее с точки зрения подключения узлов, чем кольцо. Обычно концентраторы имеют не более 10 портов. Однако это ограничение легко преодолеть за счет каскадного подключения концентраторов. Правда, как показывает практика, оптимально арбитражная петля функционирует, когда число узлов не превышает 30. Отказоустойчивость концентраторов к разрывам петли достигается за счет применения схемы обхода портов (Port Bypass Circuit, PBC). PBC позволяет автоматически обнаружить наличие узла и включить его в петлю. Аналогично PBC обнаруживает отказ узла и исключает его из петли (PBC также может быть реализована на уровне внутренней шины дискового массива). Наиболее продвинутые концентраторы поддерживают удаленное управление и другие развитые функции. Как и в случае других сетевых технологий, коммутаторы Fibre Channel являются существенно более дорогими устройствами, чем концентраторы Fibre Channel. В отличие от концентраторов, они позволяют предоставить узлу выделенную пропускную способность и, как уже упоминалось, создавать топологии с несравнимо большим числом узлов (224). Кроме того, коммутаторы могут иметь порты с поддержкой разных скоростей и сред передачи. Коммутатор Fibre Channel, по сути, объединяет два типа коммутаторов в одном устройстве, так как поддерживает коммутацию как с установлением соединения, так и без оного (условно говоря, он обладает чертами как телефонного коммутатора каналов, так и локально-сетевого коммутатора кадров). Некоторые производимые коммутаторы осуществляют только коммутацию каналов (как первый появившийся на рынке коммутатор компании Ancor Communications), другие же - только коммутацию кадров. Коммутаторы Fibre Channel просты в установке и использовании благодаря самоконфигурации и самоуправлению. При подключении узла к коммутатору он регистрируется на коммутаторе и согласует с ним взаимоприемлемые параметры. При подключении коммутатора к коммутатору они определяют конфигурацию и адреса. Все операции осуществляются автоматически. В случае универсального порта (GL_Port) коммутатор также сам устанавливает, к чему он подключен - к другому коммутатору, к петле или к узлу. Однако для организации взаимодействия между устройствами в нескольких петлях дешевле использовать не коммутатор, а коммутирующий (или гибридный) концентратор. Наиболее редко встречающимся устройством является маршрутизатор Fibre Channel (хотя, возможно, более правильно было бы называть его мостом). Он позволяет подключить сеть Fibre Channel к другой среде передачи, например к SCSI или Ethernet. Самыми распространенными устройствами являются, естественно, адаптеры Fibre Channel. Без них никакой узел не смог бы взаимодействовать с коммутирующей структурой Fibre Channel. Одни и те же адаптеры могут служить для соединения как с локальной сетью (другими узлами), так и с периферией. Это позволяет, в частности, сократить число необходимых слотов ввода/вывода. Большинство адаптеров выпускается для шины PCI. Часто вместе с адаптерами используются 'гигабитные переходники' (GigaBit Interface Converter). Они служат для преобразования оптических сигналов в электрические и обратно. Классы сервиса Коммутаторы и узлы могут поддерживать один или более видов сервиса. Никакой ручной настройки не требуется, так как общие поддерживаемые коммутаторами и узлами сервисы определяются во время процедуры регистрации. Благодаря сервисам Fibre Channel может поддерживать множество различных приложений. Сервисы делятся на классы. Основными являются Классы 1, 2 и 3. Всего же Fibre Channel имеет 6 или 7 разных видов сервиса (такая неопределенность связана с тем, что Класс 5, видимо, так и не будет определен, а Класс Intermix не имеет собственного номера и часто не рассматривается как отдельный вид сервиса). Класс 1 соответствует сервису с установлением соединения и гарантированной доставкой. Соединение через коммутирующую структуру (совокупность коммутаторов) устанавливается за несколько микросекунд. Соединение является выделенным, так что никакое иное устройство не может связаться с портами получателя и отправителя, пока соединение не будет закрыто. Гарантированная доставка обеспечивается за счет подтверждения получения. Наилучшим образом этот класс сервиса подходит для обмена большими объемами данных, в частности для резервного копирования, графических приложений и взаимодействия между суперкомпьютерами. Класс 2 представляет сервис без установления соединения, но с гарантированной доставкой (как и в предыдущем случае, с помощью подтверждений). Каждый поступающий кадр коммутируется независимо от остальных, а конечные порты могут передавать или получать кадры от нескольких других узлов. По сути, коммутатор мультиплексирует трафик от узловых портов, поэтому этот класс сервиса иногда называют мультиплексным. Кадры могут доставляться не в том порядке, в каком они были отправлены. Наилучшим образом этот класс сервиса подходит для передачи нерегулярного (пакетного) или интерактивного трафика по типу трафика локальных сетей. Класс 3 аналогичен Классу 2, за исключением того, что он не гарантирует доставку кадров (подтверждения получения). Он позволяет добиться несколько большей реальной пропускной способности за счет отсутствия подтверждений. По сути, он является аналогом передачи дейтаграмм. Наилучшим образом этот класс сервиса подходит для многоадресной и широковещательной рассылки. Остальные классы часто не выделяются в самостоятельные, а считаются подвидами перечисленных. Класс Intermix представляет собой комбинацию Класса 1 и Класса 2 (3). Он позволяет передавать кадры Класса 2 или 3, когда кадры Класса 1 не передаются, причем кадры Классов 2 или 3 вовсе не обязательно должны быть адресованы тому же получателю, что и кадры Класса 1. Как и Класс 1, Класс 4 предполагает установление соединения, гарантию доставки, фиксированную задержку, соблюдение исходного порядка кадров. Однако он требует резервирования лишь части пропускной способности, т. е. узловой порт может иметь и другие соединения. Узел может зарезервировать до 256 соединений Класса 4 одновременно, причем каждое из них может иметь свои параметры QoS. Иногда этот класс сервиса называется изохронным. Наилучшим образом он подходит для передачи цифрового видео и аудио. Как Intermix и Класс 4, Класс 6 представляет собой разновидность Класса 1. Он используется, когда узлу необходимо передать кадры сразу нескольким узлам одновременно, т. е. в случае многоадресной рассылки. Для этого узел устанавливает выделенное соединение с сервером многоадресной рассылки, адрес которого фиксирован (FFFFF5 в шестнадцатеричном формате), а тот уже берет на себя задачу тиражирования и пересылки кадров всем получателям в многоадресной группе. Характеристики fibre channel Завершая описание Fibre Channel, нельзя не упомянуть основные характеристики этой технологии. Fibre Channel позволяет поддерживать самые разные скорости - от 133 Кбит/с до 4,252 Мбит/с и даже более. Одна из целей разработки Fibre Channel состояла, в частности, в поддержке HIPPI на 100 Мбайт/с. Поэтому основной скоростью передачи данных - так называемой полной скоростью - является 100 Мбайт/с (остальные скорости указываются часто в долях от основной скорости - одна восьмая, четвертая, вторая, двойная, учетверенная). Однако, с учетом накладных расходов на кодирование 8B/10B, заголовки кадров и т. д., скорость передачи собственно битов составляет 1,063 Мбит/с. Таким образом, производители приводят, как правило, две скорости - 'полезную', в байтах за секунду, и 'чистую', в битах за секунду. Поддерживаемые расстояния и скорости передачи зависят от типа используемой среды передачи и генераторов сигнала. Как уже упоминалось, Fibre Channel может функционировать как по оптической, так и по медной среде передачи, при этом одно волокно предназначено для передачи сигнала, а другое - для приема. В случае оптики это может быть многомодовое волокно 50/125 мкм и 62,5/125 мкм и одномодовое волокно с соединителями SC. В случае меди это может быть коаксиальный кабель, в частности видеокабель с соединителями TNC (приемник) и BNC (передатчик), а также экранированная витая пара с соединителями DB-9. Наибольшие скорости (до 4 Гбит/с) и расстояния (до 10 км) достигаются в случае применения одномодового оптического волокна и низкочастотных лазеров. Многомодовое волокно способно поддерживать такие же скорости, но на гораздо меньших расстояниях, в частности 100 Мбайт/с на расстояниях до 500 м в случае многомодового волокна 50/125 мкм с высокочастотным лазером. Медная среда передачи позволяет поддерживать скорости не выше основной на небольших расстояниях (100 м и менее). |
Таблица 6.1 Сводная таблица характеристик технологий локальных сетей
Технология |
Скорость передачи данных (Мбит/с) |
Максимальная длина сегмента (м) |
|
Эстафетный тип |
|
Token Ring |
4, 16 |
100 |
|
Обычный Ethernet |
|
10base-T |
10 |
100 |
10base-F (многомодовый кабель) |
10 |
до 2000 |
10base-F (одномодовый кабель) |
10 |
до 25 000 |
10base-5 |
10 |
500 |
10base-2 |
10 |
185 |
10base-36 |
10 |
3600 |
|
Быстрый Ethernet |
|
100base-T4 |
100 |
100 |
100base-TX |
100 |
100 |
100base-FX (многомодовый) |
100 |
412 (полудуплексный режим), 2000 (дуплексный режим) |
100base-FX (одномодовый) |
100 |
20000 |
100VG |
100 |
зависит от среды |
|
Разное |
|
ATM |
от 155 до 622 |
зависит от среды |
FDDI (одномодовый кабель) |
100 |
40000 – 60000 |
FDDI (многомодовый кабель) |
100 |
2000 |
FDDI (витая пара) (CDDI) |
100 |
100 |
Fibre channel |
133, 1000, 1250 |
10000 |
|
Gigabit Ethernet |
|
100base-T (неэкранированная витая пара) |
1000 |
100 |
100base-T (одномодовый волоконно-оптический кабель) |
1000 |
3000 |
100base-T (многомодовый волоконно-оптический кабель) |
1000 |
500 |
100base-T (коаксиальный кабель) |
1000 |
25 |
тов не может решить вопрос совмещения двух технологий, они все-таки позволяют обеспечить коммуникации между разнородными станциями, теряя при этом некоторые преимущества Token Ring.
передачи данных на дальние расстояния. Он идеален при взаимодействии в зоне прямой видимости таких двух точек, как:
спутник и наземная станция;
два здания;
любые объекты, которые разделяет большое открытое пространство (например, водная поверхность или пустыня).