
- •Раздел 1. Введение в статистику тема № 1.1. Предмет, метод, задачи статистики
- •Вопрос 1. Понятие статистики и краткие сведения из ее истории
- •Вопрос 2. Предмет, метод и задачи статистики
- •1. Общие задачи:
- •2. Специальные задачи:
- •Вопрос 3. Основные категории статистики
- •Тема № 1.2. Принципы организации государственной статистики в российской федерации
- •Для специальности «Право и организация социального обеспечения»
- •Система государственной статистики в Российской Федерации
- •Задачи и принципы организации государственного статистического учета
- •Раздел 2. Статистическое наблюдение
- •Вопрос 1. Статистическое наблюдение и его этапы
- •Вопрос 2. Основные программно-методологические вопросы статистического наблюдения
- •3. Составление программы наблюдения.
- •Вопрос 3. Организационные вопросы статистического наблюдения
- •Вопрос 4. Формы, виды и способы статистического наблюдения
- •Вопрос 2.5. Оценка точности статистического наблюдения
- •Тема № 2.2. Выборочное наблюдение (4 часа)
- •Вопрос 1. Понятие о выборочном наблюдении
- •Вопрос 2. Ошибки выборки
- •Вопрос 3. Распространение выборочных результатов на генеральную совокупность
- •Для доли:
- •Раздел 3. Сводка и группировка статистических данных тема № 3.1. Задачи и виды статистической сводки
- •Вопрос 1. Понятие статистической сводки
- •Вопрос 2. Классификация статистической сводки
- •1. По глубине и точности обработки:
- •2.По форме обработки:
- •3. По технике выполнения:
- •Тема № 3.2. Метод группировки в статистике
- •Вопрос 1. Задачи и виды группировок
- •В зависимости от вида признаков, положенных в основу группировки:
- •По количеству признаков, используемых в процессе группировки:
- •Вопрос 2. Выполнение группировки по количественному признаку
- •Вопрос 3. Ряды распределения
- •Раздел 4. Способы наглядного представления данных тема № 4.1. Статистические таблицы
- •Вопрос 1. Понятие статистической таблицы и ее элементы
- •Вопрос 2. Виды таблиц
- •Вопрос 3. Основные правила оформления и чтения таблиц
- •Тема № 4.2. Статистические графики
- •Тема № 5.1. Абсолютные и относительные величины в статистике (2 часа)
- •3. По способу вычисления различают:
- •Вопрос 2. Абсолютные показатели, единицы их измерения
- •Вопрос 3.Относительные показатели
- •Тем № 5.2. Средние величины и показатели вариации (4 часа)
- •Вопрос 1. Понятие о средних величинах
- •Вопрос 2. Средняя арифметическая и ее свойства
- •Вопрос 3. Другие виды степенных средних
- •Вопрос 4. Структурные средние
- •Вопрос 5. Показатели вариации
- •Вопрос 6. Правило сложения дисперсий
- •Вопрос 7. Вариация альтернативного признака
- •Раздел 6. Ряды динамики в статистике тема № 6.1. Виды рядов динамики и методы их анализа (2 часа)
- •Вопрос 1. Классификация рядов динамики, правила их построения
- •По методологии расчета.
- •Вопрос 2. Показатели анализа ряда динамики
- •Тема № 6.2. Методы анализа основной тенденции (тренда) в рядах динамики (2 часа)
- •Вопрос 1. Методы анализа основной тенденции развития в рядах динамики
- •Вопрос 2. Методы изучения сезонных колебаний
- •Раздел 7. Индексы в статистике (4 часа)
- •Вопрос 1. Понятие и виды индексов
- •По степени охвата единиц совокупности:
- •2. По базе сравнении:
- •3. По виду объекта сравнения:
- •Вопрос 2. Индивидуальные индексы
- •Для количественных показателей:
- •Для качественных показателей:
- •Для показателей, которые получены как произведение качественного и количественного показателей:
- •Вопрос 3. Общие индексы количественных показателей
- •Вопрос 4. Общие индексы качественных показателей
- •Вопрос 5. Общие индексы смешанных показателей
- •Вопрос 6. Индексы средних величин
- •Вопрос 7. Система взаимосвязанных индексов, факторный анализ
- •Раздел 8. Статистическое изучение связи между явлениями тема № 8.1. Методы изучения связи между явлениями (2 часа)
- •Вопрос 1. Виды связей между явлениями
- •В зависимости от направления:
- •По аналитическому выражению, т.Е. По форме:
- •По количеству факторов, действующих на результативный признак:
- •Вопрос 2. Статистические методы моделирования связи
- •Корреляционный анализ
- •Регрессионный анализ
- •Вопрос 3. Непараметрические методы
- •Тема № 8.2. Корреляционно-регрессионный анализ (4 часа)
- •Вопрос 1. Регрессионный анализ
- •Вопрос 2. Корреляционный анализ
Тема № 6.2. Методы анализа основной тенденции (тренда) в рядах динамики (2 часа)
Методы анализа основной тенденции развития в рядах динамики
Методы изучения сезонных колебаний
Вопрос 1. Методы анализа основной тенденции развития в рядах динамики
При анализе рядов динамики важно выявить общую тенденцию развития (тренд) социально-экономического явления или процесса, т.е. установить в каком направлении (рост, спад) и в какой зависимости (линейной или нелинейной) оно изменяется. Эта задача в статистике называется выравниванием рядов динамики.
Наиболее простым способом выравнивания рядов является укрупнение интервалов. Суть этого способа заключается в том, что первоначальный ряд динамики заменяется другим, уровни которого относятся к большим по продолжительности периодам времени, например, дневные интервалы заменяются на пятидневные или десятидневные, а месячные интервалы – квартальными и т.п.
Частным случаем данного способа является вычисление средних уровней для укрупненных интервалов.
Одним из распространенных методов выравнивания рядов динамики является их сглаживание посредством скользящей средней. Сущность данного метода заключается в том, что рассчитывается средний уровень из определенного числа, обычно нечетного (3, 5, 7 и т.д.), первых по счету уровней ряда, затем — из такого же числа уровней, но начиная со второго по счету, далее — начиная с третьего и т.д.
Рассмотренные способы позволяют выявить тренд для его описания, но получить обобщающую статистическую оценку тренда этими подходами невозможно. Поэтому для измерения тренда используется метод аналитического выравнивания. Суть данного метода заключается в том, что фактические уровни ряда заменяются плавными уровнями, вычисленными на основе определенной линии (прямой или кривой), выбранной в предположении, что она точнее всего отображает общую тенденцию явления.
В основе метода лежит установление функциональной зависимости уровней ряда от времени. При этом на практике чаще всего применяются математические функции такого вида:
линейная:
параболическая:
гиперболическая:
степенная:
где
- параметры, которые находятся методом
наименьших квадратов
- порядковый номер
периода.
На основе теоретического анализа выявляется характер развития явления во времени, и на этой основе выбирается тот или другой вид аналитической функции. Практикой установлено, что принятие соответствующей аналитической функции осуществляется при следующих условиях:
выравнивание по уравнению прямой линии целесообразно, если цепные абсолютные приросты более или менее постоянны, т.е. уровни изменяются в арифметической прогрессии.
выравнивание по параболической функции необходимо выполнять в тех случаях, когда изменение уровней ряда происходит с приблизительно равным ускорением или замедлением цепных абсолютных приростов.
выравнивание по степенной функции целесообразно использовать тогда, когда уровни ряда выявляют тенденцию постоянства цепных темпов роста, т.е. в случае изменения уровней ряда динамики в геометрической прогрессии.
В случае линейной зависимости параметры функции находиться решением следующей системы нормальных уравнений:
Расчет параметров
можно значительно упростить, если отсчет
времени
осуществлять с середины ряда динамики.
Для того, чтобы сумма показателей времени
равнялась нулю, условные обозначения
нужно давать таким образом:
при нечетном числе уровней ряда динамики, уровень в середине ряда приравнивают к нулю, а уровни, расположенные выше него, помечают числами со знаком ''минус'' (-1,-2 и т.д.), а ниже – числами со знаком ''плюс'' (+1,+2 и т.д.)
при четном числе уровней ряда динамики уровни, которые лежат выше среднего значения, находящегося между двумя средними датами, помечают числами со знаком ''минус'' (-1,-3,-5 и т.д.), а ниже среднего значения – числами со знаком ''плюс'' (+1,+3,+5 и т.д.)
В обоих случаях
,
так что система нормальных уравнений
принимает вид:
Отсюда следует. что
В практической деятельности может возникнуть необходимость интерполяции или экстраполяции рядов динамики. Самым совершенным при этом является выравнивание по определенному аналитическому уравнению.
Интерполяция – это нахождение отсутствующих промежуточных уровней ряда динамики.
Экстраполяция используется при прогнозировании социально-экономических явлений и процессов в будущем с предположением, что выявленная тенденция будет сохраняться и в дальнейшем за пределами исследуемого ряда динамики.