
- •Методические указания к практическим занятиям
- •Содержание
- •Введение
- •1. Цель и задачи дисциплины, её место в учебном процессе
- •1.1. Необходимый уровень знаний и умений
- •2. Классификация технических средств автоматики
- •3. Понятие о статических и динамических свойствах автоматической системы регулирования
- •4. Перечень практических занятий
- •5. Практическое занятие №1 измерительные устройства
- •5.1. Измерение давления и перепада давлений
- •5.2. Измерение температуры
- •5.3. Измерение частоты вращения
- •6. Практическое занятие №2 усилительные органы
- •6.1. Гидравлические усилители
- •6.2. Пневматические усилители
- •6.3. Комбинированные усилители
- •7. Практическое занятие №3 регулирующие органы
- •8. Практическое занятие №4 регулятор частоты вращения двигателя орн-30
- •9. Практическая работа №5 всережимный регулятор «вудвард» pg
- •10. Практическое занятие №6 всережимный регулятор «вудвард» ug40tl
- •11. Практическое занятие №7 автоматизация топливосжигания в главных котлах. Топочное устройство «монарх»
- •Техническое описание
- •Программа подготовки к запуску и запуск топочного устройства «Монарх».
- •Защита, блокировка, сигнализация.
- •Подготовка к работе
- •Датчики защиты котла
- •Вопросы для выполнения контрольной работы
- •Варианты на контрольную работу
- •Список литературы
- •98309 Г. Керчь, Орджоникидзе, 82.
6.2. Пневматические усилители
Среди пневматических усилителей широко распространены распределители типа сопло-заслонка (рис. 17), работающие по принципу дросселирования. Управляющее устройство усилителя состоит из дросселя 1 постоянного сечения, к которому подводится рабочий воздух с постоянным давлением рР, и дросселя переменного сечения в виде сопла 6 инжекционного типа с заслонкой 5, движимой измерителем через рычаг 4. Последовательно соединенные дроссели образуют делитель давления воздуха. Выходное давление рВЫХ в трубопроводе 3 и в полости исполнительного механизма 2 зависит от зазора между заслонкой 5 и соплом 6, через которое воздух стравливается в атмосферу (с уменьшением зазора давление растет, а с увеличением — уменьшается).
Рис. 17. Схема действия пневматического усилителя с соплом-заслонкой
Изменение давления в рабочей полости мембранного ИМ одностороннего действия приводит к пропорциональному перемещению его выходного штока. Усилители с дроссельным УУ являются статическими. В динамике для них характерна максимальная скорость перемещения выходного звена в момент смещения управляющего золотника (заслонки) с последующим уменьшением ее до нуля.
Рассмотренные гидравлические и пневматические усилители просты по конструкции, однако необходима специальная очистка рабочей среды, которая постоянно расходуется как при установившихся, так и при переходных режимах, что требует дополнительных затрат энергии на работу компрессоров и насосов.
Безрасходные дроссельные усилители характеризуются расходом воздуха только в переходных режимах, а при установившихся расход воздуха практически отсутствует.
Рис. 18. Схемы действия пневматических безрасходных усилителей
Пневматический безрасходный компенсационный усилитель (рис. 18, а) представляет собой камеру 3, в которой расположен шток с клапанами. Верхний клапан 2 прижимается пружиной 1 к неподвижному седлу штуцера, к которому подводится сжатый воздух постоянного давления pP. На нижний клапан 7 опирается подвижное седло 6, закрепленное на эластичной мембране 8. Полость камеры 3 соединяется трубопроводом 4 с мембранным ИМ 5 одностороннего действия.
Работа усилителя основана на принципе компенсации (уравновешивания) усилий. Входным параметром является усилие FД, действующее от датчика на седло мембраны. При установившемся режиме оба клапане закрыты, величина выходного сигнала рВЫХ усилителя пропорциональна силе FД, т.е. усилие, развиваемое датчиком, уравновешивается давлением рВЫХ, действующим на активную площадь fa мембраны: FД = рВЫХ fa.
При увеличении усилия FД шток вместе с седлом 6 смещается вверх, открывая через клапан 2 доступ рабочему воздуху в камеру. С увеличением давления рВЫХ внутри камеры возрастает усилие, действующее на мембрану 8, прогибая ее вниз. Когда усилия будут равны, шток займет среднее положение и дальнейший рост давления рВЫХ прекратится. При уменьшении усилия FД мембрана под действием давления воздуха прогибается вниз, образуя между клапаном 7 и седлом 6 зазор, через который воздух из полости ИМ стравливается в атмосферу. Давление воздуха рВЫХ в камере понижается и разность сил, действующих на мембрану, уменьшается. Под действием силы FД мембрана прогибается вверх и стравливание воздуха в атмосферу через клапан 7 прекращается.
Рассмотренный безрасходный усилитель является статическим, так как наблюдается однозначное соответствие между силой FД, давлением рВЫХ воздуха и положением s штока ИМ.
В тех случаях, когда усилители должны обладать высоким быстродействием при большой выходной мощности, применяют двухкаскадные усилители с дроссельным УУ в первом каскаде и компенсационным — во втором.
Пневматический безрасходный двухкаскадный усилитель с дроссельным делителем давления в первом каскаде и шариковым УУ во втором (рис. 18, б) широко распространен в пневматических системах регулирования и управления. Входным параметром усилителя является положение yД заслонки 10 относительно сопла 11, которое однозначно определяет давление р воздуха, поступающего через дроссель 9 в междроссельную камеру Г. Управляющее устройство второго каскада состоит из трех раздельных камер А Б, В. Рабочий воздух под давлением рР =1,4·105 Па подводится в камеру А, которая через шариковый клапан 15 сообщается с камерой Б. В камере Б формируется выходной сигнал рВЫХ, идущий к мембранному ИМ одностороннего действия (на схеме не показан). Камера В постоянно сообщена с атмосферой и образована двумя мембранами 12 одинаковой активной площади с общим жестким центром, отделяющим камеру Б от камеры Г При установившемся режиме давление в камерах Б и Г равно, т.е. р = р' = рВЫХ .
Силы, действующие на жесткий центр со стороны первого и второго каскадов усиления, уравновешены и шариковый клапан находится в закрытом состоянии. По сигналу yД датчика меняется положение заслонки 10, что приводит к изменению давления в камере Г и нарушению равновесия сил жесткого центра, вызывающих его движение. При уменьшении давления в камере Г (заслонка 10 сместилась вверх, в результате чего р < р') жесткий центр движется вверх и его штуцер 13 отходит от шарика 15, который прижат к седлу диафрагмы 14 пружиной. Через отверстие в штуцере и камеру В воздух из камеры Б и полости ИМ выходит в атмосферу, выравниваются силы, действующие на жесткий центр, и он возвращается в исходное положение. При выравнивании давлений р и р' в камерах Б и Г наступает равновесие сил и сопло прижимается к шарику, а новому положению заслонки соответствует новое выходное давление рВЫХ = р' = р. Смещение заслонки вниз вызывает пропорциональный рост давления в камере Г, движение вниз шарика под действием силы жесткого центра и рост давления рВЫХ до нового значения р.
Таким образом, в динамике давление в камере Б изменяется до тех пор, пока не сравняется с давлением в камере Г, а в статике каждому положению yД заслонки соответствует вполне определенное значение выходного давления рВЫХ.
При установившихся режимах рассмотренный статический усилитель обладает незначительным расходом воздуха в атмосферу вследствие малого сечения дросселя 9 первого каскада и нулевым расходом через шариковый клапан второго каскада, что приводит к значительной экономии воздуха. В динамике обеспечиваются достаточно высокая мощность и быстродействие усилителя вследствие большого проходного сечения шарикового клапана второго каскада.