Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ASU_SVM_MU_PZ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.09 Mб
Скачать

6. Практическое занятие №2 усилительные органы

Выходной сигнал измерителя может быть использован для непосредственного воздействия на РО. Однако иногда мощность этого сигнала оказывается недостаточной и ее повышают в усилительных органах.

Усилительный орган (усилитель) — это устройство (рис. 12), в котором осуществляется увеличение мощности управляющего (входного) сигнала за счет вспомогательной энергии WB постороннего источника питания. По виду вспомогательной энергии усилители делят на механические, гидравлические, пневматические, электрические и комбинированные.

Структура и общий принцип действия механических, гидравлических и пневматических усилителей одинаковы. Рабочая среда, являющаяся вспомогательной энергией WB, подается к управляющему устройству (распределителю), которое по сигналу от датчика e = fД) управляет подводом энергии WB к исполнительному механизму. Здесь энергия рабочей среды преобразуется в механическую работу s по перемещению выходного звена. В автоматической системе регулирования это движение передается регулирующему органу, воздействующему на ОР. Совокупность УУ с ИМ образует усилитель мощности, их конструктивное исполнение зависит от вида вспомогательной энергии.

Рис. 12. Структурная схема усилительного органа.

В механическом усилителе УУ выполняют обычно в виде фрикционной муфты или рычажного реле, передающего механическую энергию сжатой пружины либо движущихся масс приводу РО.

В гидравлических и пневматических усилителях управляющие устройства по принципу действия делят на струйные, золотниковые, дроссельные, компенсационные и комбинированные.

6.1. Гидравлические усилители

В гидравлическом усилителе с отсечным золотником и поршневым ИМ двустороннего действия (рис. 13, а) масло под давлением рР подводится через втулку управляющего устройства 2 к золотнику 3. В среднем положении золотник своими полями перекрывает окна каналов, идущих в полости цилиндра исполнительного механизма 1, и поршень неподвижен.

Рис. 13. Схемы действия гидравлических усилителей с отсечным золотником и поршневым ИМ.

При смещении Δe золотника из среднего положения под воздействием датчика одна из полостей ИМ сообщается с напорной магистралью, а другая — со сливной. Под действием силы, вызванной разностью давлений масла в полостях, поршень перемещается и через шток воздействует на РО. Поршень будет перемещаться на расстояние Δs до тех пор, пока не дойдет до крайнего положения в цилиндре либо пока золотник не вернется в среднее положение. Направление движения поршня зависит от направления смещения золотника.

Зависимость между входным параметром Δе усилителя и выходным Δs может быть получена из условия неразрывности потока масла, поступающего в полость ИМ. Так, за время Δt объем масла, поступающего через напорное окно УУ, равен объему, в котором переместился поршень за тот же промежуток времени:

fЗ v Δt = fП Δs,

где fЗ — площадь открытого золотником проходного сечения окна;

v — скорость потока масла в окне;

fП — активная площадь поршня ИМ;

Δs — перемещение поршня за время Δt.

Эта зависимость справедлива, если пренебречь силами сопротивления движению поршня, сжимаемостью и протечками масла, инерцией движущихся масс ИМ. При прямоугольном сечении окон шириной b площадь fЗ проходного сечения пропорциональна смещению Δе золотника: fЗ = Δеb.

В гидравлическом усилителе с отсечным золотником и дифференциальным поршневым исполнительным механизмом (рис. 13, в) активная площадь нижнего основания поршня 7 исполнительного механизма 1 значительно больше площади верхнего (кольцевого) основания. Верхняя полость неуправляема, и в нее по каналу 8 непрерывно поступает масло под давлением рР из напорной магистрали. При среднем положении золотник 3 своим полем закрывает канал 9, ведущий в нижнюю полость ИМ, и поршень неподвижен. Смещение Δе золотника вверх под действием датчика приводит к сообщению нижней полости ИМ через канал 9 со сливом. От давления масла на верхнюю кольцевую поверхность поршень перемещается вниз. При смещении золотника вниз обе полости ИМ соединяются с напорной магистралью, что приводит к движению поршня под действием разности сил вверх. Движение поршня прекращается при установке управляющего золотника в среднее положение.

В рассмотренных усилителях золотниковые УУ просты по конструкции и обладают большой пропускной способностью рабочей среды, что позволяет получить высокую скорость движения поршня ИМ.

При автоматизации паровых СЭУ широко применяют гидравлические усилители со струйными УУ. В корпусе управляющего устройства типа струйного реле 4 (рис. 14, а) установлены напорное сопло 1, качающаяся струйная трубка (сопло) 3 и два приемных сопла (диффузора) 5, которые трубопроводами сообщаются с полостями поршневого исполнительного механизма 6 двустороннего действия. Вода (реже масло) под давлением рр = (4÷8)105 Па подводится через напорное сопло в диффузор струйной трубки 3, закрепленной на оси 2. Ось совершает качательные движения по сигналу от датчика. При выходе из сужающейся трубки 3 потенциальная энергия давления жидкости преобразуется в кинетическую, а в расширяющихся соплах 5 кинетическая энергия вновь превращается в потенциальную. Среднему положению  трубки относительно приемных окон соответствует одинаковое давление в выходных соплах 5 (p1 = р2) и полостях ИМ. Поршень при этом неподвижен. Смещение сопла 3 из среднего положения в положение или  приводит к совмещению его с одним из сопел 5, вследствие чего растет давление в одной полости ИМ и падает в другой. Под действием разности давлении поршень перемещается либо до крайнего положения, либо до тех пор, пока сопло 3 не вернется в среднее положение. Жидкость, не попавшая в напорный трубопровод и вытесняемая поршнем при его движении, идет на слив под давлением рСЛ через патрубок в корпусе струйного реле. Выходным параметром усилителя является перемещение s штока ИМ.

В струйном двухпоточном усилителе (рис. 14, б) напорные сопла 1, идущие от подводящего штуцера 7, и приемные сопла 5 закреплены неподвижно попарно друг против друга, а подводом жидкости к исполнительному механизму 6 управляет подвижная качающаяся заслонка 8, связанная с датчиком через вал 2.

При среднем положении  заслонки давление в приемных соплах 5, а следовательно, и полостях ИМ одинаково (р1 = р2). Отклонение заслонки от среднего положения в положение или  приводит к разности давлений в полостях, вызывая перемещение поршня. Жидкость из полости с меньшим давлением идет на слив через диффузор и сливное отверстие в корпусе УУ. Поршень перемещается до тех пор, пока заслонка струйного реле не встанет в среднее положение.

Рис. 14. Схемы действия струйных гидравлических усилителей.

При среднем положении  заслонки давление в приемных соплах 5, а следовательно, и полостях ИМ одинаково (р1 = р2). Отклонение заслонки от среднего положения в положение или  приводит к разности давлений в полостях, вызывая перемещение поршня. Жидкость из полости с меньшим давлением идет на слив через диффузор и сливное отверстие в корпусе УУ. Поршень перемещается до тех пор, пока заслонка струйного реле не встанет в среднее положение.

Возвратно-поступательное движение поршня преобразуется кривошипно-шатунным механизмом в угол разворота αС выходного вала и зубчатого сектора 9, передающего воздействие на РО.

Рассмотренные усилители являются астатическими, так как любое значение входного параметра Δe 0 вызывает изменение выходного параметра до максимального значения ΔSmax с постоянной скоростью. Движение выходного звена таких усилителей может быть ограничено при любом его промежуточном положении установкой УУ в среднее положение, т. е. при Δe=0. Для этого необходимо соответствующее воздействие датчика либо введение в усилитель отрицательной жесткой обратной связи, сущность которой состоит в действии на управляющее устройство ИМ противоположно действию измерителя.

Рис. 15. Схема действия гидравлического усилителя с ЖОС

Гидравлический усилитель с ЖОС (рис. 15) отличается от усилителя, показанного на рис. 14. а, тем, что через рычаг жесткой обратной связи АОВ передается обратное кинематическое воздействие от поршня 3 исполнительного механизма на подвижную втулку 1 золотника 2. Если при некотором воздействии измерителя золотник смещается относительно втулки из среднего положения вверх на расстояние ΔeД, то верхняя полость исполнительного механизма сообщается с напорной магистралью, а нижняя — со сливной. Сила, вызванная разностью давлений рР — рСЛ, движет поршень вниз. Он разворачивает рычаг АОВ относительно опоры О в положение А'ОВ' и смещает золотниковую втулку вверх на расстояние ΔeЖ, перекрывая золотником окна, идущие к исполнительному механизму. Движение поршня прекращается в момент установки втулки и золотника в среднее положение вследствие действия ЖОС. Такая обратная связь, принцип действия которой основан на компенсации (выравнивании) перемещений, является кинематической.

Таким образом, под действием кинематической следящей ЖОС ограничивается движение поршня ИМ и новому значению ΔeД входного параметра усилителя соответствует новое значение Δs выходного параметра. Зависимость между этими величинами можно получить из условий движения золотника относительно втулки под действием датчика ΔeД (поршень ИМ неподвижен) и втулки относительно золотника под действием жесткой обратной связи ΔeЖ (золотник неподвижен).

Таким образом, введение в усилитель отрицательной ЖОС позволило обеспечить жесткую связь между входным и выходным параметрами, а соотношение между ними регулируют обычно изменением коэффициента kЖ.

Подобными свойствами обладают усилители с УУ типа дросселей переменного сечения и ИМ одностороннего действия.

Рис. 16. Схема действия гидравлического усилителя с дросселем переменного сечения.

В гидравлический усилитель одностороннего действия (рис. 16) масло под давлением рР (3 ÷ 4) 105 Па поступает через дроссель 4 постоянного сечения, ограничивающий его максимальный расход. Затем масло идет на слив через дроссель переменного сечения в виде втулки 1 и проточного золотника 2, перемещаемого датчиком через шток 3. Два последовательно соединенных дросселя образуют делитель давления рР — рСЛ, выходным сигналом которого является давление рВЫХ, поступающее в рабочую полость исполнительного механизма 5. При смещении золотника вниз уменьшается сечение сливных окон втулки и растет давление рВЫХ. Увеличивается давление масла на поршень ИМ площадью fП. Преодолевая действие силовой пружины 6 с жесткостью с и предварительным натяжением z0, поршень начинает движение при увеличении давления на выходе до давления страгивания.

На заданное давление страгивания ИМ настраивают изменением значения z0. Минимальное давление рВЫХ выхода рабочей среды должно быть несколько ниже р0, а устанавливают его подбором проходного сечения дросселя 4 при полностью открытых окнах золотниковой втулки 1.

Дальнейшее смещение Δe золотника вниз вызывает повышение давления рВЫХ, большее р0 на значение Δр, и пропорциональное перемещение Δs выходного штока 7 ИМ, т.е усилитель является статическим. Движение золотника в обратном направлении вызывает понижение давления рВЫХ и противоположное движение поршня под действием силовой пружины. Разность сил, действующих на поршень со стороны давления рабочей среды и силовой пружины, определяет значение движущей силы ИМ на выходном штоке.

Исполнительный механизм, в котором движение выходного звена в одну сторону происходит под действием рабочей среды, а в противоположную —под действием силовой пружины, называется ИМ одностороннего действия. Недостатком таких механизмов является снижение движущей силы при понижении давления рВЫХ в рабочей полости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]